Skip to main content
Log in

Nuclear refrigeration and thermometry at microkelvin temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The present status and problems of refrigeration and thermometry at microkelvin temperatures will be discussed. It will be shown that a better understanding of internal, time dependent heat leaks and of thermal boundary resistances as well as further progress in thermometry are necessary to reduce the present minimum temperature of about 10 ΜK to which matter has been refrigerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. V. Lounasmaa, Experimental Principles and Methods below 1 K (Academic, London, 1974).

    Google Scholar 

  2. D. S. Betts, Refrigeration and Thermometry below One Kelvin (Sussex Univ. Press, Sussex, 1976); An Introduction to Millikelvin Technology (Cambridge Univ. Press, Cambridge, 1989).

    Google Scholar 

  3. F. Pobell, Matter and Methods at Low Temperatures (Springer, Berlin, Heidelberg, 1992).

    Google Scholar 

  4. K. Andres and O. V. Lounasmaa, in Progress in Low Temperature Physics, by D. F. Brewer, ed. (North-Holland, Amsterdam 1982), Vol. 8, p. 221.

    Google Scholar 

  5. G. R. Pickett, Rep. Progr. Phys. 51, 1295 (1988).

    Google Scholar 

  6. R. M. Mueller, Ch. Buchal, H. R. Folle, M. Kubota, and F. Pobell, Cryogenics 20, 395 (1980).

    Google Scholar 

  7. F. Pobell, Physica B & C 109 & 110, 1485 (1982) (Proceedings of the 16th International Conference Low Temperature Physics).

    Google Scholar 

  8. H. Ishimoto, N. Nishida, T. Furubayashi, M. Shinohara, Y. Takano, Y. Miura, and K. Ono, J. Low Temp. Phys. 55, 17 (1984).

    Google Scholar 

  9. K. Gloos, P. Smeibidl, C. Kennedy, A. Singsaas, P. Sekowski, R. M. Mueller, and F. Pobell, J. Low Temp. Phys. 73, 101 (1988).

    Google Scholar 

  10. D. J. Bradley, A. M. Guénault, V. Keith, C. J. Kennedy, J. E. Miller, S. G. Musset, G. R. Pickett, and W. P. Pratt Jr., J. Low Temp. Phys. 57, 359 (1984).

    Google Scholar 

  11. K. Gloos, C. Mitschka, F. Pobell, and P. Smeibidl, Cryogenic 30, 14 (1990).

    Google Scholar 

  12. K. Gloos, P. Smeibidl, and F. Pobell, Zeit. Phys. 82, 227 (1990).

    Google Scholar 

  13. B. Schröder-Smeibidl, K. Gloos, P. Smeibidl, and F. Pobell, to be published 1992.

  14. B. Schröder-Smeibidl. P, Smeibidl, G. Eska, and F. Pobell, J. Low Temp. Phys. 85, 311 (1991).

    Google Scholar 

  15. P. G. v. d. Haar, G. Frossati, to be published.

  16. M. T. Huiku, T. A. Jyrkkio, J. M. Kyynääräinen, M. T. Loponen, O. V. Lounasmaa, and A. S. Oja, J. Low Temp. Phys. 62, 433 (1986).

    Google Scholar 

  17. P. Esquinazi, R. König, and F. Pobell, Z.f. Physik (1992).

  18. M. Schwark, F. Pobell, W. P. Halperin, Ch. Buchal, J. Hanssen, M. Kubota, and R. M. Mueller, J. Low Temp. Phys. 53, 685 (1983).

    Google Scholar 

  19. M. Schwark, M. Kubota, R. M. Mueller, and F. Pobell, J. Low Temp. Phys. 58, 171 (1985).

    Google Scholar 

  20. M. Kolác, B. S. Neganov, and S. Sahling, J. Low Temp. Phys. 59, 547 (1985).

    Google Scholar 

  21. W. R. Wampler, T. Schober, and B. Lengeler, Phil. Mag. 34, 129 (1976).

    Google Scholar 

  22. J. Zimmermann and G. Weber, Phys. Rev. Lett. 46, 661 (1980); J. Zimmermann, Cryogenics 14, 27 (1984).

    Google Scholar 

  23. W. A. Phillips (ed.) Amorphous Solids—Low Temperature Properties (Springer, Berlin, Heidelberg, 1981).

    Google Scholar 

  24. T. Nakaya in Progress in Low Temperature Physics, by D. F. Brewer, ed. (North-Holland, Amsterdam, 1989), vol. 7, p. 155.

    Google Scholar 

  25. H. Chocholacs, Dissertation, KFA Jülich 1984 (JüL-Report 1901).

  26. H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa, J. Low Temp. Phys. 77, 133 (1989).

    Google Scholar 

  27. E. F. Ezell, F. Pollock, and J. G. Daunt, J. Low Temp. Phys. 42, 47 (1981).

    Google Scholar 

  28. D. A. Ritchie, J. Saunders, and D. F. Brewer, Proceedings of the 17th International Conference on Low Temperature Physics, U. Eckern, A. Schmid, W. Weber, and W. Wühl, eds. (North-Holland, Amsterdam, 1984), vol. 2, p. 743.

  29. G. Frossati, J. Physique 39C6, 1578 (1978); J. Low Temp. Phys. (this issue).

    Google Scholar 

  30. T. Mamiya, H. Yano, H. Kondo, T. Suzuki, T. Kato, Y. Minamide, Y. Miura, and S. Inone, Physica B 165 + 166, 837 (1990) (Proceedings of the 19th Int Conference).

  31. Ch. Buchal, J. Hanssen, R. M. Mueller, and F. Pobell, Rev. Sci. Instrum. 49, 1360 (1978).

    Google Scholar 

  32. J. Yu and W. P. Halperin, J. Low Temp. Phys. 45, 189 (1981).

    Google Scholar 

  33. P. Kumar, J. Kurkijärvi, and A. S. Oja, Phys. Rev. B 33, 189 (1981).

    Google Scholar 

  34. P. Kumar, J. Kurkijärvi, and A. S. Oja, Phys. Rev. B 33, 477 (1986).

    Google Scholar 

  35. Ch. Buchal, R. M. Mueller, F. Pobell, M. Kubota, and H. R. Folle, Solid State Comm. 42, 43 (1982); and unpublished results.

    Google Scholar 

  36. O. Avenel, P. M. Berglund, and E. Varonquaux, as quoted in D. O. Edwards et al. Physics at Ultralow Temperature, T. Sugawara, S. Nakajima, T. Ohtsuka, T. Usui, eds. (Physical Society of Japan, Tokyo, 1978), p. 280.

    Google Scholar 

  37. R. Ling, E. R. Dobbs, and J. Saunders, Phys. Rev. B 33, 629 (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pobell, F. Nuclear refrigeration and thermometry at microkelvin temperatures. J Low Temp Phys 87, 635–649 (1992). https://doi.org/10.1007/BF00114919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114919

Keywords

Navigation