Skip to main content
Log in

Lectures on the properties of liquid and Solid 3He-4He mixtures at low temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

We give a concise review of the empirical properties of liquid and solid 3He-4He mixtures and their phenomenological interpretation.

The bulk of the paper is about dilute solutions of 3He in liquid 4He at temperatures well below the tricritical point, where the roton and phonon excitations are comparatively unimportant. We describe the thermodynamic properties in terms of the Landau-Pomeranchuk 3He quasiparticles and the effective interaction between them, introduced by Emery and Bardeen, Baym and Pines. The scattering amplitude, needed to fit the low temperature transport properties, and the effective interaction are related, provided the multiple virtual scattering calculated by Fu and Pethick is included. The multiple scattering should always be included, even for very small concentrations. We present the evidence for the velocity dependence of the effective interaction, and urge that this also be taken into account in the interpretation of experiments. We give a short description of spin-polarized liquid mixtures and of the possibility of pairing superfluidity in solutions of 3He in liquid 4He. The existence of supersaturated solutions may be a way to attain p-wave pairing at accessible temperatures.

Beacause of phase separation, the concentration of 4He in dilute mixtures of 4He in liquid 3He becomes very small as the temperature is lowered, making it unlikely that a degenerate Bose gas of 4He quasiparticles can be produced. In addition, the superfluid 4He film on the walls of the vessel makes the achievement of a supersaturated solution very difficult. We briefly review the measurements of the phase separation, the density and specific heat, and show that the spectrum of the 4He quasiparticles and the role of their effective interactions are still in doubt.

In solid 3He-4He mixtures the thermodynamic properties and the phase diagram, including the crystallographic transformation, fit the regular solution model very well. On the other hand, dilute solid solutions of either 3He or 4He in the other isotope have NMR relaxation times and spin diffusion which agree with the theory of impuritons (mass fluctuation waves) which tunnel more or less freely through the crystal. The reconciliation of these two theories and an explanation of the accuracy of the regular solution model remain mysteries. A deviation from the regular solution model, the fluctuation specific heat above the phase separation temperature, is discussed in detail.

The review includes two tables which list most of the experiments on liquid and solid 3He-4He mixtures published between 1975 and 1990.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A recent review of phenomena at the lambda line is by H. Meyer, J. Low Temp. Phys. 70, 219 (1988).

    Google Scholar 

  2. J. C. Wheatley, Am. J. Phys. 36, 181 (1968); Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1964), Vol. VI, p. 77.

    Google Scholar 

  3. C. Ebner and D. O. Edwards, Phys. Rep. 2C, 77 (1970).

    Google Scholar 

  4. G. Baym, in The Helium Liquids, J. G. Armitage and I. E. Farquhar, eds. (Academic, New York, 1975), p. 417.

    Google Scholar 

  5. G. Baym and C. Pethick, in The Physics of Liquid and Solid Helium, part II K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978) p. 123.

    Google Scholar 

  6. A. Ghozlan and E. Varoquaux, Ann. de Physique 3, 239 (1979).

    Google Scholar 

  7. E. P. Bashkin and A. E. Meyerovich, Adv. Phys. 30, 1 (1981).

    Google Scholar 

  8. R. A. Guyer, R. C. Richardson, and L. I. Zane, Rev. Mod. Phys. 43, 532 (1971).

    Google Scholar 

  9. A. E. Meyerovich, in Progress in Low Temperature Physics, D. F. Brewer, ed. (North-Holland, Amsterdam, (1987), Vol. 11, p. 1.

    Google Scholar 

  10. S. Stringari, ed. Spin-Polarized Quantum Systems (World Scientific, Singapore, 1989).

    Google Scholar 

  11. A. E. Meyerovich, in Frontiers in Condensed Matter Physics Vol. 26, W. P. Halperin and L. P. Pitaevskii, eds. (North-Holland, Amsterdam, 1990), Vol. 26.

    Google Scholar 

  12. A. E. Meyerovich, Physica B 169, 183 (1990).

    Google Scholar 

  13. J. R. Owers-Bradley, Physica B 169, 190 (1990).

    Google Scholar 

  14. I. M. Khalatnikov, An Introduction to the Theory of Superfluidity (Benjamin, New York, 1965).

    Google Scholar 

  15. R. de Bruyn Ouboter and C. N. Yang, Physica B144, 127 (1987).

    Google Scholar 

  16. R. Radebaugh, NBS Technical Note 362 (1967).

  17. J. G. M. Kuerten, C. A. M. Castelijns, A. T. A. M. de Waele, and H. M. Gijsman, Physica B 128, 197 (1985); Cryogenics 25, 419 (1985).

    Google Scholar 

  18. J. Wilks, Liquid and Solid Helium (Oxford University Press, 1967).

  19. W. E. Keller, Helium-3 and Helium-4 (Plenum Press, New York, 1969).

    Google Scholar 

  20. J. Wilks and D. S. Betts, An Introduction to Liquid Helium (Oxford University Press, 1987).

  21. The Physics of Liquid and Solid Helium, parts I and II K. H. Bennemann and J. B. Ketterson, eds. (Wiley, New York, 1978).

    Google Scholar 

  22. C. V. Heer and J. G. Daunt, Phys. Rev. 81, 447 (1951).

    Google Scholar 

  23. R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).

    Google Scholar 

  24. H. M. Guo, D. O. Edwards, R. E. Sarwinski, and J. T. Tough, Phys. Rev. Lett. 27, 1259 (1971).

    Google Scholar 

  25. M. Iino, M. Suzuki, and A. J. Ikushima, J. Low Temp. Phys. 61, 155 (1985).

    Google Scholar 

  26. M. Suzuki, Y. Okuda, A. J. Ikushima, and M. Iino, Europhys. Lett. 5, 333 (1988); M. Iino, M. Suzuki, A. J. Ikushima, and Y. Okuda, J. Low Temp. Phys. 59, 291 (1985).

    Google Scholar 

  27. G. K. Walters and W. M. Fairbank, Phys. Rev. 103, 262 (1952).

    Google Scholar 

  28. E. H. Graf, D. M. Lee, and J. D. Reppy, Phys. Rev. Lett. 19, 417 (1967).

    Google Scholar 

  29. D. O. Edwards, D. F. Brewer, P. Seligmann, M. Skertic, and M. Yaqub, Phys. Rev. Lett. 15, 773 (1965).

    Google Scholar 

  30. The suggestion by Edwards and Daunt (Ref. 31) that some 3He might remain in solution in liquid 4He even at the absolute zero was based on an interpretation of empirical data using the Landau-Pomeranchuk theory (Sec. IIIc). At the same time and quite independently van Leeuwen and Cohen (Ref. 32) found that a dilute gas of Fermi and Base hard spheres with properties similar to liquid helium was partially miscible at 0 K.

  31. D. O. Edwards and J. G. Daunt, Phys. Rev. 124, 640 (1961).

    Google Scholar 

  32. J. M. J. van Leeuwen and E. G. D. Cohen, Physica 27, 1157 (1961).

    Google Scholar 

  33. E. G. D. Cohen and J. M. J. van Leeuven, Physica 26, 1171 (1960).

    Google Scholar 

  34. J. C. Owen, Phys. Rev. Lett. 47, 586 (1981).

    Google Scholar 

  35. M. Saarela in Recent Progress in Many Body Theory A. Avishai, ed. (Plenum, New York, 1990), p. 337.

    Google Scholar 

  36. A. Fabrocini, S. Fantoni, S. Rosati, and A. Polls, Phys. Rev. B 33, 6057 (1986).

    Google Scholar 

  37. W. Hsu, D. Pines and C. H. Aldrich, Phys. Rev. B 32, 7179 (1985).

    Google Scholar 

  38. L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk. SSSR 59, 669 (1948).

    Google Scholar 

  39. V. N. Zharkov and V. P. Silin, Zh. Eksp. Teor. Fiz. 37, 143 (1960) [Sov. Phys.—JETP 10, 102 (1960)].

    Google Scholar 

  40. P. Seligmann, D. O. Edwards, R. E. Sarwinski, and J. T. Tough, Phys. Rev. 181, 415 (1969).

    Google Scholar 

  41. W. F. Saam and J. P. Laheurte, Phys. Rev. A 4, 1170 (1971).

    Google Scholar 

  42. R. M. Bowley, J. Low. Temp. Phys. 61, 291 (1985); J. Low. Temp. Phys. 71, 319 (1988).

    Google Scholar 

  43. N. R. Brubaker, D. O. Edwards, R. E. Sarwinski, P. Seligmann, and R. A. Sherlock, Phys. Rev. Lett. 25, 715 (1970).

    Google Scholar 

  44. E. C. Stoner, Phil. Mag. 28, 257 (1939).

    Google Scholar 

  45. J. Owers-Bradley, R. M. Bowley, and P. C. Main, J. Low Temp. Phys. 60, 243 (1985).

    Google Scholar 

  46. J. R. Owers-Bradley, P. C. Main, R. M. Bowley, G. J. Batey, and R. J. Church, J. Low Temp. Phys. 72, 201 (1988).

    Google Scholar 

  47. D. O. Edwards, E. M. Ifit, and R. E. Sarwinski, Phys. Rev. 177, 380 (1969).

    Google Scholar 

  48. B. M. Abraham, O. G. Brandt, Y. Eckstein, J. Manurin, and G. Baym, Phys. Rev. 188, 309 (1969).

    Google Scholar 

  49. V. J. Emery, Phys. Rev. 148, 138 (1966).

    Google Scholar 

  50. V. J. Emery, Phys. Rev. 161, 194 (1967).

    Google Scholar 

  51. V. J. Emery, J. Low Temp. Phys. 3, 499 (1970).

    Google Scholar 

  52. J. Bardeen, G. Baym, and D. Pines, Phys. Rev. Lett. 17, 372 (1966).

    Google Scholar 

  53. J. Bardeen, G. Baym, and D. Pines, Phys. Rev. 156, 207 (1967).

    Google Scholar 

  54. G. Baym and C. Ebner, Phys. Rev. 170, 346 (1968).

    Google Scholar 

  55. J. Landau, J. T. Tough, N. R. Brubaker, and D. O. Edwards, Phys. Rev. Lett. 23, 283 (1969); Phys. Rev. 2, 2472A (1970).

    Google Scholar 

  56. A. E. Watson, J. D. Reppy, and R. C. Richardson, Phys. Rev. 188, 384 (1969).

    Google Scholar 

  57. T. Satoh, M. Morishita, M. Ogata, A. Sawada, and T. Kuroda, Physica B 169, 513 (1991).

    Google Scholar 

  58. A. F. Andreev, Zh. Eksper. I Teor. Fiz. (USSR) 50, 1415 (1966). [Soviet Phys.—JETP 23, 939 (1966)].

    Google Scholar 

  59. G. Baym, Phys. Rev. Lett. 17, 952 (1966).

    Google Scholar 

  60. The fact that Eq. (IIf.2) is an inequality was recently used to put a lower bound on the kinetic energy in pure 4 He by J. Boronat, A. Fabrocini, and A. Polls, Phys. Rev. B 39, 2700 (1989).

    Google Scholar 

  61. P. A. Whitlock, D. M. Ceperley, and G. V. Chester, Phys. Rev. B 19, 5598 (1989).

    Google Scholar 

  62. B. M. Abraham, O. G. Grandt, and Y. Eckstein, Proceedings of the Twelfth International Conference on Low Temperature Physics, Kyoto, Japan, 1970, E. Kanda, ed. Keigaku, Tokyo, 1971), p. 161, and private communication from B. M. Abraham.

  63. See, for example, E. Pines and P. Nozières, The Theory of Quantum Liquids (W. A. Benjamin, New York, 1966), Vol. I, Chap. 1.

    Google Scholar 

  64. I. M. Khalatnikov, Z. Eksper. i Teor. Fiz. 55, 1919 (1988). [Sov. Phys.—JETP 28, 1014 (1969)].

    Google Scholar 

  65. A. I. Ahonen, M. A. Paalanen, R. C. Richardson, and Y. Takano, J. Low Temp. Phys. 25, 733 (1976).

    Google Scholar 

  66. L. A. Pogorelov, B. N. Esel'son, O. S. Nosovitskaya, and V. I. Sobolev, Fiz. Nizk. Temp. 5, 83 (1979) [Sov. J. Low Temp. Phys. 5, 40 (1979)].

    Google Scholar 

  67. V. I. Sobolev, B. N. Esel'son, O. S. Nosovitskaya, and L. A. Pogorelov, Fiz. Nizk. Temp. 5, 565 (1979) [Sov. J. Low Temp. 5, 269 (1979)].

    Google Scholar 

  68. W. L. McMillan, Phys. Rev. 175, 266 (1968); 182, 299 (1969).

    Google Scholar 

  69. P. Nozières, Theory of interacting Fermi systems (Benjamin, New York, 1964), Chap. 4.

    Google Scholar 

  70. W. F. Saam, Ann. Phys. 53, 219 (1969).

    Google Scholar 

  71. A. C. Anderson, D. O. Edwards, W. R. Roach, R. E. Sarwinski, and J. C. Wheatley, Phys. Rev. Lett. 17, 367 (1966).

    Google Scholar 

  72. H. H. Fu and C. J. Pethick, Phys. Rev. B 14, 3837 (1976).

    Google Scholar 

  73. K. A. Kuenhold and C. Ebner, Phys. Rev. A 9, 2724 (1974).

    Google Scholar 

  74. C. Ebner, Ph.D. thesis, University of Illinois, 1967, unpublished.

  75. G. Baym, J Low Temp. Phys. 18, 335 (1975).

    Google Scholar 

  76. D. L. Husa, D. O. Edwards, and J. R. Gaines, Phys. Lett. 21, 28 (1966); Proceedings of the Tenth International Conference on Low Temperature Physics, M. P. Malkov, ed. (Viniti, Moscow, 1967), p. 345.

    Google Scholar 

  77. C. Ebner, Phys. Rev. 156, 222 (1967).

    Google Scholar 

  78. C. Ebner, Phys. Rev. 185, 392 (1969).

    Google Scholar 

  79. Y. Disatnik and H. Brucker, J. Low Temp. Phys. 7, 501 (1972); Y. Disatnik and A. Yaniv, J. Low Temp. Phys. 10, 595 (1973).

    Google Scholar 

  80. D. S. Greywell, Phys. Rev. B 20, 2643 (1979). Although the measurements of the second sound velocity in this paper are the most accurate available, the values of p n deduced from them are incorrect for the reasons given by Bowley in Ref. 42.

    Google Scholar 

  81. A. Ghozlan and E. Varoquaux, Phys. Lett. 30A, 426 (1969).

    Google Scholar 

  82. T. M. M. Hampson, R. M. Bowley, D. Brugel and G. McHale, J. Low Temp. Phys. 73, 333 (1988).

    Google Scholar 

  83. D. W. Hess and K. S. Bedell, J. Low Temp. Phys. 81, 103 (1990).

    Google Scholar 

  84. S. A. J. Wiegers, R. Jochemsen, C. C. Kranenburg, and G. Frossati, J. Low Temp. Phys. 71, 69 (1988).

    Google Scholar 

  85. D. S. Greywall and M. A. Paalanen, Phys. Rev. Lett. 46, 1292 (1981).

    Google Scholar 

  86. J. R. Owers-Bradley, P. C. Main, R. J. Church, T. M. M. Hampson, G. McHale, and R. M. Bowley, Phys. Rev. Lett. 61, 1619 (1988); J. Low. Temp. Phys. 77, 327 (1989).

    Google Scholar 

  87. D. Candela, L.-J. Wei, D. R. McAllaster, and W. J. Mullin, Phys. Rev. Lett. 67, 330 (1991).

    Google Scholar 

  88. J. R. Owers-Bradley, D. R. Wightman, R. M. Bowley, A. Bedford, and A. Child, preprint dated May 1991 (submitted to J. Low Temp. Phys.).

  89. D. Candela, D. R. McAllaster, L.-J. Wei, and G. A. Vermeulen, Phys. Rev. Lett. 65, 595 (1990).

    Google Scholar 

  90. D. Candela, D. R. McAllaster, and L.-J. Wei, preprint, 5/31/91.

  91. D. S. Greywall and M. A. Paalanen, Physica B 109 & 110, 1575 (1982).

    Google Scholar 

  92. F. Dalfovo and S. Stringari, J. Low Temp. Phys. 71, 311 (1988).

    Google Scholar 

  93. W. J. Gully and W. J. Mullin, Phys. Rev. Lett. 52, 1810 (1984).

    Google Scholar 

  94. P. J. Nacher, I. Shinkoda, P. Schleger, and W. N. Hardy, Phys. Rev. Lett. 67, 839 (1991).

    Google Scholar 

  95. L. P. Roobol, S. C. Steel, R. Jochemsen, G. Frossati, K. S. Bedell, and A. E. Meyerovich, submitted to Europhys. Lett. (1991).

  96. P. G. van de Haar, G. Frossati, and K. S. Bedell, J. Low Temp. Phys. 77, 35 (1989).

    Google Scholar 

  97. R. M. Mueller, H. Chocalacs, C. Buchal, M. Kubota, J. R. Owers-Bradley, and F. Pobell, AIP Conf. Proc. 103, 192 (1983).

    Google Scholar 

  98. D. I. Bradley, A. M. Guenault, V. Keith, C. J. Kennroy, I. E. Miller, S. G. Husset, G. R. Pickett, and W. P. Pratt Jr., J. Low. Temp. Phys. 57, 359 (1984).

    Google Scholar 

  99. H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa, J. Low Temp. Phys. 77, 133 (1989).

    Google Scholar 

  100. A. A. Levchenko and L. P. Mezhov-Deglin, Fiz. Nizk. Temp. 11, 1123 (1985) [Sov. J. Low. Temp. Phys. 11, 617 (1985)].

    Google Scholar 

  101. M. J. Lea, P. W. Retz, and P. Fozooni, J. Low Temp. Phys. 66, 325 (1987).

    Google Scholar 

  102. E. S. Murdock and L. R. Corruccini, J. Low Temp. Phys. 46, 219 (1982).

    Google Scholar 

  103. E. Ya. Rudavskii and V. K. Chagovets, Fiz. Nizk. Temp. 9, 234 (1983) [Sov. J. Low Temp. Phys. 9, 116 (1983)].

    Google Scholar 

  104. A. G. M. van der Boog, L. P. J. Husson, Y. Disatnik, and H. C. Kramers, Physica B 104, 303 (1981).

    Google Scholar 

  105. B. N. Esel'son, O. S. Nosovitskaya, L. A. Pogorelov, and V. I. Sobolev, Pis'ma Zh. Eksp. Teor. Fiz. 31, 34 (1980). [Sov. Phys.-JETP Lett. 31, 31 (1980)].

    Google Scholar 

  106. D. B. Fenner and K. Luszczynski, Phys. Rev. B 16, 4833 (1977).

    Google Scholar 

  107. E. S. Murdock, K. R. Mountfield, and L. R. Corruccini, J. Low Temp. Phys. 31, 581 (1978).

    Google Scholar 

  108. V. L. Vvedenskii and V. P. Pechhkov, Pis'ma Zh. Eksp. Teor. Fiz. 23, 643 (1976). [Sov. Phys.-JETP Lett. 23, 589 (1976)].

    Google Scholar 

  109. H. Ishimoto, H. Fukuyama, T. Fukuda, T. Tazaki, and S. Ogawa, Phys. Rev. B 38, 6422 (1988).

    Google Scholar 

  110. H. Ishimoto, H. Fukuyama, N. Nishida, Y. Miura, Y. Takano, T. Fukuda, T. Tazaki, and S. Ogawa, Phys. Rev. Lett. 59, 904 (1987).

    Google Scholar 

  111. J. R. Owers-Bradley, H. Chocolacs, R. M. Mueller, C. Buchal, M. Kubota, and F. Pobell, Phys. Rev. Lett. 51, 2120 (1983).

    Google Scholar 

  112. H. C. M. van der Zeeuw, R. F. Mudde, and H. Van Beelen, Physica B 142, 187 (1986).

    Google Scholar 

  113. E. Polturak and R. Rosenbaum, J. Low Temp. Phys. 43, 477 (1981).

    Google Scholar 

  114. D. S. Greywall, Phys. Rev. Lett. 41, 177 (1978).

    Google Scholar 

  115. P. A. Hilton, R. Scherm, and W. G. Stirling, J. Low Temp. Phys. 27, 851 (1977).

    Google Scholar 

  116. L. J. M. Van de Klundert, M. R. E. Bos, J. A. M. van der Meij, and H. J. Steffens, Phys. Lett. 62A, 487 (1977).

    Google Scholar 

  117. R. H. Arnold and P. B. Pipes, Phys. Rev. B 21, 5156 (1980).

    Google Scholar 

  118. E. Ya. Rudavskii, V. K. Chagovets and G. A. Sheshin, Fiz. Nizk. Temp. 15, 568 (1989) [Sov. J. Low Temp. Phys. 15, 320 (1989)].

    Google Scholar 

  119. I. N. Adamenko, E. Ya. Rudavskii, V. I. Tsyganok, and V. K. Chagovets, J. Low Temp. Phys. 71, 261 (1988).

    Google Scholar 

  120. E. Ya. Rudavskii and V. K. Chagovets, Fiz. Nizk. Temp. 10, 1031 (1984) [Sov. J. Low. Temp. Phys. 10, 538 (1984)].

    Google Scholar 

  121. V. K. Chagovets, E. Ya. Rudavskii, and V. A. Goncarov, Fiz. Nizk. Temp. 11, 266 (1985) [Sov. J. Low Temp. Phys. 11, 145 (1985)]

    Google Scholar 

  122. N. E. Dyumin, B. N. Esel'son, L. S. Dikina, and G. Ya. Kotenev, Fiz. Nizk. Temp. 7, 1566 (1981) [Sov. J. Low Temp. Phys. 7, 758 (1981)].

    Google Scholar 

  123. A. G. M. van der Boog, L. P. J. Husson, and H. C. Kramers, Phys. Lett. 66A, 305 (1978).

    Google Scholar 

  124. D. S. Greywall, Phys. Rev. Lett. 42, 1758 (1979).

    Google Scholar 

  125. D. A. Rockwell, F. F. Benjamin, and T. J. Greytak, J. Low Temp. Phys. 18, 389 (1975).

    Google Scholar 

  126. W. J. P. de Voogt, J. B. M. de Haas, J. Weiber, and H. C. Kramers, Physica B 84, 315 (1976).

    Google Scholar 

  127. W. J. P. de Voogt and H. C. Kramers, Physica B 84, 328 (1976).

    Google Scholar 

  128. B. Faak, K. Guckelsberger, M. Koerfer, and R. Scherm, Phys. Rev. B 41, 8732 (1990).

    Google Scholar 

  129. I. N. Adamenko, E. Ya. Rudavskii, V. I. Tsyganok, and V. K. Chagovets, Fiz. Nizk. Temp. 11, 1020 (1985) [Sov. J. Low Temp. Phys. 11, 560 (1985)].

    Google Scholar 

  130. F. Guillon, J. P. Harrison, A. Sachrajda, and D. A. Atkins, J. Low Temp. Phys. 57, 95 (1984).

    Google Scholar 

  131. F. Guillon, J. P. Harrison, T. McMullen, and A. Tyler, Phys. Rev. Lett. 47, 435 (1981).

    Google Scholar 

  132. V. N. Grigor'ev, B. N. Esel'son, and V. A. Mikheev, Fiz. Nizk. Temp. 1, 5 (1975) [Sov. J. Low Temp. Phys. 1, 1 (1975)].

    Google Scholar 

  133. L. P. J. Husson, C. E. D. Ouwerkerk, A. L. Reesink, and R. de B. Ouboter, Physica B 122, 8 (1983).

    Google Scholar 

  134. R. B. Kummer, V. Narayanamurti, and R. C. Dynes, Phys. Rev. B 16, 1046 (1977).

    Google Scholar 

  135. We use the nomenclature traditional for the 3He-4He liquid-solid phase diagram, see for instance Ref. 136.

  136. D. O. Edwards and S. Balibar, Phys. Rev. B 39, 4083 (1989).

    Google Scholar 

  137. J. P. Laheurte, J. Low Temp. Phys. 12, 127 (1973).

    Google Scholar 

  138. The demonstration was performed by A. Schuch, E. C. Kerr, and R. D. Taylor. Descriptions are given in a footnote in E. C. Kerr and R. D. Taylor, Ann. Phys. 20, 450 (1962) and on p. 39 of Ref. 19. We are grateful to E. F. Hammel, W. E. Keller, and R. D. Taylor for some unpublished details.

    Google Scholar 

  139. J. R. G. Keyston and J. P. Laheurte, Phys. Lett. 24A, 132 (1967); J. P. Laheurte, Phys. Rev. A 6, 2452 (1972).

    Google Scholar 

  140. M. Nakamura, Y. Fujii, T. Shigi, and K. Nagao, J. Phys. Soc. Japan 57, 1676 (1988); M. Nakamura, G. Shirota, T. Shigematsu, K. Nagao, Y. Fujii, M. Yamaguchi, and T. Shigi, Physica B 165 & 166, 517 (1990).

    Google Scholar 

  141. R. de Bruyn Ouboter, K. W. Taconis, C. Le Pair, and J. J. Beenakker, Physica 26, 853 (1960).

    Google Scholar 

  142. A. F. Andreev and E. M. Lifshitz, Zh. Eksp. Teor. Fiz. (USSR) 56, 2057 (1969) [Sov. Phys.-JETP 29, 1107 (1969)].

    Google Scholar 

  143. P. Kumar and M. Bernier, J. Low Temp. Phys. 79, 1 (1990).

    Google Scholar 

  144. See e.g. A. H. Wilson, Thermodynamics and Statistical Mechanics, (Cambridge Univ. Press, (1957), p. 420.

  145. D. O. Edwards, A. S. McWilliams, and J. G. Daunt, Phys. Rev. Lett. 9, 195 (1962).

    Google Scholar 

  146. M. F. Panczyk, R. A. Scribner, J. R. Gonano, and E. D. Adams, Phys. Rev. Lett. 21, 594 (1968).

    Google Scholar 

  147. I. Prigogine, R. Bingen, and J. Jeener, Physica 20, 383 (1954); I. Prigogine and J. Jeener, Physica 20, 516 (1954); I. Prigogine, R. Bingen, and A. Bellemans, Physica 20, 633 (1954); I. Prigogine, The Molecular Theory of Solutions (North-Holland, Amsterdam, 1957), p. 400.

    Google Scholar 

  148. P. G. Klemens, R. de Bruyn Ouboter, and C. Le Pair, Physica 30, 1863 (1964).

    Google Scholar 

  149. R. A. Coldwell-Horsfall, Proceedings of the Ninth International Conference on Low Temperature Physics, Columbus, Ohio, 1964 J. G. Daunt, D. O. Edwards, F. J. Milford, and M. Yaqub, eds. (Plenum, New York, 1965), p. 1110.

    Google Scholar 

  150. W. J. Mullin, Phys. Rev. Lett. 20, 254 (1968).

    Google Scholar 

  151. S. Ehrlich and R. O. Simmons, J. Low Temp. Phys. 68, 125 (1987).

    Google Scholar 

  152. S. Ehrlich and R. O. Simmons, Can. J. Phys. 65, 1569 (1987).

    Google Scholar 

  153. I. Iwasa and H. Suzuki, J. Phys. Soc. Jpn. 49, 1722 (1980).

    Google Scholar 

  154. I. Iwasa and H. Suzuki, J. Phys. Soc. Jpn. 51, 2116 (1982).

    Google Scholar 

  155. Y. Hirayoshi, T. Mizusaki, S. Maegawa, and A. Hirai, J. Low Temp. Phys. 30, 137 (1978).

    Google Scholar 

  156. A. R. Allen and M. G. Richards, Phys. Lett. 65A, 36 (1978).

    Google Scholar 

  157. V. A. Mikheev, B. N. Esel'son, V. N. Grigor'ev, and N. P. Mikhim, Fiz. Nizk. Temp. 3, 385 1977) [Sov. J. Low. Temp. Phys. 3, 186 (1977)].

    Google Scholar 

  158. V. A. Mikheev, V. A. Maidanov, and N. P. Mikhin, Fiz. Nizk. Temp. 8, 1000 (1982) [Sov. J. Low Temp. Phys. 8, 505 (1982)].

    Google Scholar 

  159. J. Schratter, A. R. Allen, and M. G. Richards, J. Low Temp. Phys. 57, 179 (1984).

    Google Scholar 

  160. V. A. Mikheev, V. A. Maidanov, and N. P. Mikhin, Fiz. Nizk. Temp. 12, 658 (1986) [Sov. J. Low Temp. Phys. 12, 375 (1986)].

    Google Scholar 

  161. N. V. Grigor'ev, B. N. Esel'son, and V. A. Mikheev, Fiz. Nizk. Temp. 1, 1318 (1975) [Sov. J. Low Temp. Phys. 1, 632 (1975)].

    Google Scholar 

  162. S. Maegawa, T. Mizusaki, Y. Hirayoshi, T. Kusumoto, and A. Hirai, J. Low Temp. Phys, 39, 151 (1980).

    Google Scholar 

  163. Y. Hirayoshi, T. Mizusaki, S. Maegawa, and A. Hirai, Phys. Lett. 57A, 359 (1976).

    Google Scholar 

  164. M. G. Richards, J. Pope, P. S. Tofts, and J. H. Smith, J. Low Temp. Phys. 24, 1 (1976).

    Google Scholar 

  165. B. N. Esel'son, V. A. Mikheev, V. N. Grigor'ev, and N. P. Mikhin, Zh. Eksp. Teor. Fiz. 74, 2311 (1978) [Sov. Phys.-JETP 47, 1200 (1978)].

    Google Scholar 

  166. A. A. Golub and S. V. Svatko, Fiz. Nizk. Temp. 6, 1112 (1980) [Sov. J. Low Temp. Phys. 6, 540 (1980)].

    Google Scholar 

  167. A. A. Golub and S. V. Svatko, Fiz. Nizk. Temp. 7, 970 (1981) [Sov. J. Low Temp. Phys. 7, 469 (1981)].

    Google Scholar 

  168. V. A. Mikheev, A. A. Golub, V. A. Goncharov, V. P. Rusnak, and V. A. Shvarts, Fiz. Nizk. Temp. 15, 540 (1989) [Sov. J. Low Temp. Phys. 15, 304 (1989)].

    Google Scholar 

  169. A. A. Golub, V. A. Goncharov, V. A. Mikheev, V. P. Rusnak, and V. A. Shvarts, Fiz. Nizk. Temp. 16, 851 (1990) [Sov. J. Low Temp. Phys. 16, 500 (1990)].

    Google Scholar 

  170. B. A. Fraass and R. O. Simmons, Phys. Rev. B 36, 97 (1987).

    Google Scholar 

  171. Yu. D. Anufriev, V. N. Lopatik, and A. P. Sebedash, Pis'ma Zh. Eksp. Teor. Fiz. 37, 38 (1983) [Sov. Phys.-JETP Lett. 37, 45 (1983)].

    Google Scholar 

  172. V. N. Lopatik, Zh. Eksp. Teor. Fiz. 86, 487 (1984). [Sov. Phys.-JETP 59, 284 (1984)].

    Google Scholar 

  173. V. L. Vvedenskii, Pis'ma Zh. Eksp. Teor. Fiz. 24, 152 (1976) [Sov. Phys.-JETP Lett. 24, 132 (1976)].

    Google Scholar 

  174. I. Iwasa and H. Suzuki, Proceedings of the 17th International Conference on Low Temperature Physics (LT 17), Karlsruhe, 1984 (Elsevier, Amsterdam, 1984), CM16.

    Google Scholar 

  175. I. Iwasa and H. Suzuki, Phonon Scattering in Condensed Matter, W. Eisenmenger, K. Lassman, and S. Dottinger, eds., Proc. of the Fourth International Conference on Phonon Scattering in Condensed Matter, Stuttgart 1983 (Springer, Berlin, 1984), p. 260. Note that the bulk modulus of a bcc 3 He crystal of 24 cm3 molar volume is taken as 300 atm in this paper, whereas 183 atm is a more accurate value.

    Google Scholar 

  176. M. Bernier and A. Landesman, J. de Physique 32, C5a-213 (1971).

    Google Scholar 

  177. A. Landesman, Phys. Lett. 54A, 137 (1975).

    Google Scholar 

  178. I. Fujii, A. J. Ikushima, M. Fukuhara, K. Kaneko, and M. Suzuki, J. Low Temp. Phys. 63, 535 (1986).

    Google Scholar 

  179. V. N. Grigor'ev, N. E. Dyumin, L. S. Dikina, and S. V. Svatko, Fiz. Nizk. Temp. 9, 341 (1983) [Sov. J. Low Temp. Phys. 9, 171 (1983)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edwards, D.O., Pettersen, M.S. Lectures on the properties of liquid and Solid 3He-4He mixtures at low temperatures. J Low Temp Phys 87, 473–523 (1992). https://doi.org/10.1007/BF00114915

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114915

Keywords

Navigation