Skip to main content
Log in

Vortices in 2-D and 3-D superfluids

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

These lectures revolve around the interrelation between superfluidity and vortices. A superfluid system, such as helium, breaks gauge invariance by locally choosing a particular phase. Fluctuations in the phase give rise to the excitation spectrum of the system and to the topological excitations of the system, the quantized vortices. The equations of motion for the phase can describe situations in which the superfluid is accelerated, examples being first, second, third, and fourth sound. The phase can also change because of the motion of vortices, a topic known as phase slippage. In the first two lectures the idea of phase coherence is discussed, and how this idea leads very naturally to the description of phonon excitations, to second sound, and to the more exotic melting and freezing waves at the interface between solid and liquid helium; in the third and fourth lectures the topics are quantized vortices, their nucleation either by negative ions or by flow through orifices. In the last two lectures the ideas of vortex nucleation and phase slippage are applied to two-dimensional superfluids, that is to thin films of helium and to thin superconducting films. Here the vortices form bound pairs below a particular temperature corresponding to a phase transition. Phase slippage only occurs for unbound vortices, so the behavior is quite different above and below the transition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Anderson, Rev. Mod. Phys. 238, 298 (1966).

    Google Scholar 

  2. R. Louden and P. L. Knight, J. Mod. Opt. 34, 709 (1987).

    Google Scholar 

  3. P. C. Hohenberg, Phys. Rev. 158, 383 (1967); N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).

    Google Scholar 

  4. R. P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955).

    Google Scholar 

  5. E. Feenberg, Theory of Quantum Liquids (Academic Press, New York, 1969).

    Google Scholar 

  6. H. J. Maris, Phys. Rev. Lett. 66, 45 (1991).

    Google Scholar 

  7. J. Ruvalds and A. Zawadowski, Phys. Rev. Lett. 25, 33 (1970); F. Iwamoto, Prog. Low Temp. Phys. 44, 1121 (1970).

    Google Scholar 

  8. L. P. Pitaevski, Sov. Phys.-J.E.T.P. 8, 282 (1959).

    Google Scholar 

  9. H. A. Mook, Phys. Rev. B 37, 5806 (1988).

    Google Scholar 

  10. K. Bedell, D. Pines, and I. Fomin, J. Low Temp. Phys. 48, 417 (1982).

    Google Scholar 

  11. A. F. Andreev and A. Ya. Parshin, Sov. Phys.-J.E.T.P. 48, 763 (1978).

    Google Scholar 

  12. K. O. Keshishev, A. Ya, Parshin, and A. V. Babkin, Sov. Phys.-J.E.T.P. 30, 56 (1979), 53, 362 (1981).

    Google Scholar 

  13. G. W. Rayfield and F. Reif, Phys. Rev. Lett. 11, 305 (1963); Phys. Rev. 136, A1194 (1964).

    Google Scholar 

  14. R. M. Bowley, P. V. E. McClintock, F. E. Moss, and P. C. E. Stamp, Phys. Rev. Lett. 44, 161 (1980).

    Google Scholar 

  15. R. M. Bowley, G. G. Nancolas, and P. V. E. McClintock, Phys. Rev. Lett. 52, 659 (1984).

    Google Scholar 

  16. G. G. Nancolas, R. M. Bowley, and P. V. E. McClintock, Phil. Trans. Roy. Soc. 313, 537 (1985).

    Google Scholar 

  17. K. W. Schwarz and P. S. Jang, Phys. Rev. A 8, 3199 (1973); D. Pines in Quantum Fluids, D. F. Brewer, ed. (North-Holland, Amsterdam, 1966), p. 328.

    Google Scholar 

  18. G. W. Rayfield, Phys. Rev. Lett. 19, 1371 (1967).

    Google Scholar 

  19. C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Phil. Trans. Roy, Soc. A 311, 433 (1984).

    Google Scholar 

  20. C. M. Muirhead, W. F. Vinen, and R. J. Donnelly, Phil. Trans. Roy. Soc. A 311, 433 (1984).

    Google Scholar 

  21. P. C. Hendry, N. S. Lawson, P. V. E. McClintock, C. D. H. Williams, and R. M. Bowley, Phys. Rev. Lett. 60, 604 (1988); Phil. Trans. Roy. Soc.

    Google Scholar 

  22. R. M. Bowley, P. V. E. McClintock, F. E. Moss, G. G. Nancolas, and P. C. E. Stamp, Phil. Trans. Roy. Soc. A 307, 201 (1982).

    Google Scholar 

  23. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 55, 2704 (1985).

    Google Scholar 

  24. E. Varoquaux, M. W. Meisel, and O. Avenel, Phys. Rev. Lett. 57, 2292 (1986).

    Google Scholar 

  25. O. Avenel, E. Varoquaux, and W. Zimmermann Jnr., Proceedings of LT 19, Physica 165 & 166, 749 (1990).

    Google Scholar 

  26. W. Zimmerman Jnr., O. Avenel, and E. Varoquaux, Proceedings of LT19, Physica 165 & 166, 751 (1990).

    Google Scholar 

  27. E. Varoquaux, W. Zimmermann, and O. Avenel in Excitations in Two Dimensional and Three Dimensional Quantum Fluids, A. F. G. Wyatt, ed. (Plenum, New York, 1991).

    Google Scholar 

  28. J. M. Kosterlitz and D. J. Thouless, Prog. Low Temp. Phys. VIIIb, 373 (1978), J. Phys. C 6, 1181 (1973).

    Google Scholar 

  29. A. P. Young in Ordering in Strongly Fluctuating Condensed Matter Systems, T. Riste, ed. (Plenum, New York, 1979), p. 271; Phys. Rev. B 19, 1855 (1979).

    Google Scholar 

  30. J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

    Google Scholar 

  31. D. R. Nelson and J. M. Kosterlitz, Phys. Rev. Lett. 39, 1201 (1977).

    Google Scholar 

  32. D. J. Bishop and J. D. Reppy, Phys. Rev. B 22, 5171 (1980).

    Google Scholar 

  33. V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Siggia, Phys. Rev. B 21, 1806 (1980).

    Google Scholar 

  34. G. Agnolet, D. F. McQueeney, and J. D. Reppy, Phys. Rev. 39, 893 (1989).

    Google Scholar 

  35. V. Ambegaokar and S. Teitel, Phys. Rev. B 19, 1667 (1979).

    Google Scholar 

  36. K. A. Gillis, S. Volz, and J. M. Mochel, J. Low Temp. Phys. 61, 172 (1985).

    Google Scholar 

  37. P. W. Adams and W. I. Glaberson, Phys. Rev. B 35, 4633 (1987).

    Google Scholar 

  38. J. Pearl, Applied Phys. Lett. 5, 65 (1964).

    Google Scholar 

  39. B. I. Halperin and D. R. Nelson, J. Low Temp. Phys. 36, 599 (1979).

    Google Scholar 

  40. A. M. Kadin, K. Epstein, and A. M. Goldman, Phys. Rev. B 27 6691 (1983).

    Google Scholar 

  41. A. T. Fiory, A. F. Hebard, P. M. Mankiewich, and R. E. Howard, Phys. Rev. Lett. 61, 1419 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bowley, R.M. Vortices in 2-D and 3-D superfluids. J Low Temp Phys 87, 137–196 (1992). https://doi.org/10.1007/BF00114903

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114903

Keywords

Navigation