Skip to main content
Log in

A technique for photographing vortex positions in rotating superfluid helium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

A technique is described for photographing the positions of quantized vortex lines in rotating superfluid helium. Electron bubbles are trapped on the lines, and then extracted through the free surface and accelerated into a phosphor screen. Details of the apparatus are presented, along with examples of the data and the data collection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Nuovo Cimento 6, Suppl. 2, 249 (1949); R. P. Feynman, in Progress in Low Temperature Physics, C. J. Gorter, ed. (North-Holland, Amsterdam, 1955), Vol. 1.

    Google Scholar 

  2. L. D. Landau, J. Phys. USSR 5, 71 (1941).

    Google Scholar 

  3. H. E. Hall, Phil. Trans. Roy. Soc. A 250, 359 (1957).

    Google Scholar 

  4. D. V. Osborne, Proc. Phys. Soc. (Lond.) A 64, 909 (1950).

    Google Scholar 

  5. F. London, Phys. Rev. 54, 947 (1938).

    Google Scholar 

  6. W. F. Vinen, Proc. Roy. Soc. (Lond.) 260A, 218 (1960); S. C. Whitmore and W. Zimmermann, Jr., Phys. Rev. 166, 181 (1968).

    Google Scholar 

  7. G. W. Rayfield and F. Reif, Phys. Rev. 136, A1194 (1964).

    Google Scholar 

  8. W. I. Glaberson and M. Steingart, Phys. Rev. Lett. 26, 1423 (1971).

    Google Scholar 

  9. H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (Lond.) A 238, 204 (1956).

    Google Scholar 

  10. G. Careri, W. D. McCormick, and F. Scaramuzzi, Phys. Lett. 1, 61 (1962).

    Google Scholar 

  11. B. E. Springett, D. J. Tanner, and R. J. Donnelly, Phys. Rev. Lett. 14, 585 (1965).

    Google Scholar 

  12. R. L. Douglass, Phys. Rev. Lett. 13, 791 (1964); W. P. Pratt, Jr. and W. Zimmermann, Jr., Phys. Rev. 177, 412 (1969).

    Google Scholar 

  13. W. I. Glaberson, J. Low Temp. Phys. 1, 289 (1969).

    Google Scholar 

  14. R. J. Donnelly, Experimental Superfluidity (Univ. of Chicago Press, Chicago, 1967); A. L. Fetter, The Physics of Liquid and Solid Helium, Part 1, K. H. Benneman and J. B. Ketterson, eds. (Wiley, New York, 1976), Chapter 3.

    Google Scholar 

  15. R. E. Packard and T. M. Sanders, Phys. Rev. A 6, 799 (1972).

    Google Scholar 

  16. H. E. Hall and W. F. Vinen, Proc. Roy. Soc. (Lond.) A 238, 215 (1956).

    Google Scholar 

  17. S. Putterman and G. E. Uhlenbeck, Phys. Fluids 12, 2229 (1969).

    Google Scholar 

  18. L. D. Landau and E. M. Lifschitz, Statistical Physics, 2nd ed. (Pergamon Press, Oxford, 1969), p. 53.

    Google Scholar 

  19. V. K. Tkachenko, Sov. Phys.-JETP 22, 1282 (1966).

    Google Scholar 

  20. V. K. Tkachenko, Sov. Phys.-JETP 23, 1049 (1966).

    Google Scholar 

  21. G. B. Hess, Phys. Rev. 161, 189 (1967).

    Google Scholar 

  22. D. Stauffer and A. L. Fetter, Phys. Rev. 168, 156 (1967).

    Google Scholar 

  23. L. J. Campbell and R. M. Ziff, Phys. Rev. B 20, 1886 (1979).

    Google Scholar 

  24. H. Trauble and U. Essman, J. Appl. Phys. 39, 4052 (1968).

    Google Scholar 

  25. K. L. Chopra and J. B. Brown, Phys. Rev. 108, 157 (1957); A. M. Finkelshtein, Sov. Phys.—JETP 31, 183 (1970); K. C. Harvey and A. L. Fetter, J. Low Temp Phys. 11, 473 (1973).

    Google Scholar 

  26. J. D. Maynard and T. R. Carver, Bull. Am. Phys. Soc. 19, 460 (1974); J. D. Maynard and T. R. Carver, Rev. Sci. Instr. 47, 190 (1976); P. L. Marston and W. M. Fairbank, Phys. Rev. Lett. 39, 1208 (1977).

    Google Scholar 

  27. R. E. Packard and G. A. Williams, Low Temperature Physics—LT 13, K. D. Timmerhouse, W. J. O'Sullivan, and E. F. Hammel, eds. (Plenum, New York, 1973), Vol. 1, p. 311.

    Google Scholar 

  28. G. A. Williams and R. E. Packard, Phys. Rev. Lett. 33, 280 (1974).

    Google Scholar 

  29. M. J. V. Gordon, G. A. Williams, and R. E. Packard, J. Phys. (Paris) 39 (Coll. C-6), C6–172 (1978).

    Google Scholar 

  30. E. J. Yarmchuck, M. J. V. Gordon, and R. E. Packard, Phys. Rev. Lett. 43, 214 (1979).

    Google Scholar 

  31. B. E. Springett, M. H. Cohen, and J. Jortner, Phys. Rev. 159, 183 (1967); A. J. Dahm and T. M. Sanders, Phys. Rev. Lett. 17, 126 (1966); J. A. Northby and T. M. Sanders, Phys. Rev. Lett. 18, 1184 (1967); J. Poitrenaud and F. I. B. Williams, Phys. Rev. Lett. 32, 1213 (1974).

    Google Scholar 

  32. R. J. Donnelly and P. H. Roberts, Proc. Roy. Soc. A 312, 519 (1969).

    Google Scholar 

  33. R. L. Douglass, Phys. Lett. 28A, 560 (1969).

    Google Scholar 

  34. K. DeConde, G. A. Williams, and R. E. Packard, Phys. Rev. Lett. 33, 683 (1974).

    Google Scholar 

  35. G. A. Williams and R. E. Packard, J. Low Temp. Phys. 33, 459 (1978).

    Google Scholar 

  36. G. F. J. Garlick, Luminescent Materials (Clarendon Press, Oxford, 1949), p. 176.

    Google Scholar 

  37. H. M. Leverenz, Luminescence in Solids (Wiley, New York, 1950), p. 427.

    Google Scholar 

  38. W. Espe, Materials of High Vacuum Technology (Pergamon Press, Oxford, 1968), Vol. 3, p. 89.

    Google Scholar 

  39. H. Soule, Electro-Optical Photography at Low Illumination Levels (Wiley, New York, 1968), p. 301.

    Google Scholar 

  40. R. E. Packard and G. A. Williams, Rev. Sci. Instr. 45, 1179 (1974).

    Google Scholar 

  41. G. A. Williams and R. E. Packard, Rev. Sci. Instr. 45, 1029 (1974).

    Google Scholar 

  42. O. E. Vilches and J. C. Wheatley, Rev. Sci. Instr. 37, 819 (1966).

    Google Scholar 

  43. M. Kuchnir, J. B. Ketterson, and P. R. Roach, Phys. Rev. A 6, 341 (1972).

    Google Scholar 

  44. C. M. Surko, R. E. Packard, G. J. Dick, and F. Reif, Phys. Rev. Lett. 24, 657 (1970).

    Google Scholar 

  45. R. Gomer, Rev. Sci. Instr. 24, 993 (1953).

    Google Scholar 

  46. H. Kanter and W. A. Feibelman, J. Appl. Phys. 33, 3580 (1962).

    Google Scholar 

  47. E. J. Yarmchuk and R. E. Packard, to be published.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by the National Science Foundation, Division of Materials Research.

Alfred P. Sloan Research Fellow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.A., Packard, R.E. A technique for photographing vortex positions in rotating superfluid helium. J Low Temp Phys 39, 553–577 (1980). https://doi.org/10.1007/BF00114894

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114894

Keywords

Navigation