Skip to main content
Log in

Anharmonic effects in ultrasonic propagation near the lambda transition of 4He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Anharmonic effects are studied by measuring the temperature dependence of second harmonics of a 10-MHz ultrasonic wave generated near the λ transition of pressurized liquid 4He. The anharmonic coupling coefficient C between the fundamental wave and the second harmonic is found to diverge as % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-qqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xHapdbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeSipIOZaaq% WaaeaaieaacaWF0baacaGLhWUaayjcSdWaaWbaaSqabeaaieqacaGF% TaGaa4hiaGqadKqaGkaa9fdaaaacbiGccaaFBbGaaeiDaiaa+1daca% aFOaGaaeivaiaa+9cacaqGubWaaSbaaSqaaGGadiab7T7aSbqabaGc% caaFPaacciGaeONeI0IaaWxmaiaa81faaaa!4911!\[ \sim \left| t \right|^{ - 1} [{\rm{t}} = ({\rm{T}}/{\rm{T}}_\lambda ) - 1]\] near Τλ. A phenomenological relation is developed expressing C in terms of known relevant thermodynamic quantities. This relation accounts well for the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gitterman, Rev. Mod. Phys. 50, 85 (1978).

    Google Scholar 

  2. R. T. Beyer and S. V. Letcher, Physical Ultrasonics (Academic Press, 1969), Chapter 7; O. V. Rudenko and S. I. Soluyan, Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York and London, 1977).

  3. A. L. Thuras, R. T. Jenkins, and H. T. O'Neil, J. Acoust. Soc. Am. 6, 173 (1935).

    Google Scholar 

  4. A. Hikata, B. B. Chick, and C. Elbaum, J. Appl. Phys. 36, 229 (1965).

    Google Scholar 

  5. E. R. Grilly and R. L. Mills, Ann. Phys. 18, 250 (1962).

    Google Scholar 

  6. E. C. Kerr and R. D. Taylor, Ann. Phys. 26, 292 (1964).

    Google Scholar 

  7. K. H. Mueller, G. Ahlers, and F. Pobell, Phys. Rev. B 14, 2096 (1976).

    Google Scholar 

  8. R. L. Mills and S. G. Sydoriak, Ann. Phys. 34, 276 (1965).

    Google Scholar 

  9. E. C. Kerr, J. Chem. Phys. 26, 511 (1957); C. T. Van Degrift and J. R. Pellam, in Low Temperature Physics-LT 13 (Plenum, New York, 1974), Vol. 1, p. 343.

    Google Scholar 

  10. H. A. Kierstead, Phys. Rev. 162, 153 (1967).

    Google Scholar 

  11. G. Ahlers, Phys. Rev. A 8, 530 (1973).

    Google Scholar 

  12. E. R. Grilly, Phys. Rev. 149, 97 (1966).

    Google Scholar 

  13. H. A. Kierstead, Phys. Rev. 153, 258 (1967); Phys. Rev. 160, 262(E) (1967).

    Google Scholar 

  14. A. B. Pippard, Phil. Mag. 1, 473 (1956); The Elements of Classical Thermodynamics (Cambridge University Press, London, 1957).

    Google Scholar 

  15. M. J. Buckingham and W. M. Fairbanks, Prog. Low Temp. Phys. 3, 80 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by the National Science Foundation under Grant DMR77-12249 and through the Materials Research Laboratory of Brown University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwun, H., Hikata, A. & Elbaum, C. Anharmonic effects in ultrasonic propagation near the lambda transition of 4He. J Low Temp Phys 39, 497–503 (1980). https://doi.org/10.1007/BF00114892

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114892

Keywords

Navigation