Skip to main content
Log in

Some aspects of destabilization in reversible dynamical systems with application to follower forces

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper examines the destabilization of the equilibria of reversible dynamical systems which is induced by the addition of irreversible perturbations. Attention is restricted to reversible dynamical systems which have frequently appeared in the literature on elastic stability. There they are often referred to as follower force problems. The destabilization phenomenon is linear in nature and explicit criteria are established to determine the particular eigenvalue splittings. The post-destabilization dynamics are also examined using the appropriate normal forms for two specific cases, one where the eigenvalues are non-resonant and the other where the eigenvalues are in a strong one-to-one resonance. Finally, the destabilization criteria and certain features of the post-destabilization dynamics are illustrated using two examples of follower force systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol'd, V. I., Geometric Methods in the Theory of Ordinary Differential Equations, Springer-Verlag, New York, 1983.

    Google Scholar 

  2. Bellman, R., Introduction to Matrix Analysis, McGraw-Hill, New York, 1960.

    Google Scholar 

  3. Bibikov, Y. N., Local Theory of Nonlinear Analytic Ordinary Differential Equations, Lecture Notes in Mathematics, Vol. 702, Springer-Verlag, New York, 1979.

    Google Scholar 

  4. Birkhoff, G. D., Dynamical Systems, American Mathematical Society, Providence, Rhode Island, 1927.

    Google Scholar 

  5. Bloch, A. M., Krishnaprasad, P. S., Marsden, J. E., and Ratiu, T. S., ‘Dissipation induced instabilities’, Annales de L'Institut H. Poincaré: Analyse Non Linéaire 11, 1994, 37–90.

    Google Scholar 

  6. Devaney, R. L., ‘Reversible diffeomorphisms and flows’, Transactions of the American Mathematical Society 218, 1976, 89–113.

    Google Scholar 

  7. Fu, F. C. L. and Nemat-Nasser, S., ‘Stability of solutions of systems of linear differential equations with harmonic coefficients’, AIAA Journal 10, 1972, 30–36.

    Google Scholar 

  8. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, New York, 2nd revised and corrected printing, 1986.

    Google Scholar 

  9. Haller, G., ‘Gyroscopic stability and its loss in systems with two essential coordinates’, International Journal of Non-Linear Mechanics, 27, 1992, 113–127.

    Google Scholar 

  10. Helmholtz, H., ‘Über die physikalische Bedeutung des Princips der kleinsten Wirkung’, Crelle Journal für die reine und angewandte Mathematik 100, 1887, 137–166 and 213–222.

    Google Scholar 

  11. Herrmann, G. and Bungay, R. W., ‘On the stability of elastic systems subjected to nonconservative forces’, ASME Journal of Applied Mechanics 31, 1964, 435–440.

    Google Scholar 

  12. Herrmann, G. and Jong, I. Ch., ‘On the destabilizing effect of damping in nonconservative elastic systems’, ASME Journal of Applied Mechanics 32, 1965, 592–597.

    Google Scholar 

  13. Leipholz, H. H., Stability of Elastic Systems, Sijthoff and Noordhoff, Alphen aan den Rijn, 1980.

    Google Scholar 

  14. MacKay, R. S., ‘Movement of eigenvalues of Hamiltonian equilibria under non-Hamiltonian perturbation’, Physics Letters 155A, 1991, 266–268.

    Google Scholar 

  15. Moser, J., Stable and Random Motions in Dynamical Systems, Princeton University Press, Princeton, New Jersey, 1973.

    Google Scholar 

  16. Namachchivaya, N. S., Doyle, M. M., Langford, W. F., and Evans, N. W., ‘Normal form for generalized Hopf bifurcation with non-semisimple 1:1 resonance’, Journal of Applied Mathematics and Physics (ZAMP) 45, 1994, 312–335.

    Google Scholar 

  17. Namachchivaya, N. S. and Malhotra, N. K., ‘Normal forms and homoclinic chaos, application to structural systems’, Fields Institute Communications, 1995, in press.

  18. Roberts, J. A. G. and Quispel, G. R. W., ‘Chaos and time-reversal symmetry’, Physics Reports 216 (2/3), 1992, 63–177.

    Google Scholar 

  19. Sevryuk, M. B., ‘Lower dimensional tori in reversible systems’, Chaos 1, 1991, 160–167.

    Google Scholar 

  20. Shahruz, S. M. and Ma, F., ‘Approximate decoupling of the equations of motion of linear underdamped systems’, ASME Journal of Applied Mechanics 110, 1988, 716–720.

    Google Scholar 

  21. Takens, F., ‘Singularities of vector fields’, Publications Mathématique de l'Institut des Hautes Etudes Scientifique 43, 1974, 47–100.

    Google Scholar 

  22. Tkhai, V. N., ‘On stability of mechanical systems under the action of position forces’, Journal of Applied Mathematics and Mechanics (English translation of P.M.M.) 44, 1981, 24–29.

    Google Scholar 

  23. Tkhai, V. N., ‘The reversibility of mechanical systems’, Journal of Applied Mathematics and Mechanics (English translation of P.M.M.) 55, 1991, 461–468.

    Google Scholar 

  24. Tompson, W. and Tait, P. G., Treatise on Natural Philosophy, Cambridge University Press, Cambridge, 1912 reprinted edition.

    Google Scholar 

  25. vanGils, S. A., Krupa, M., and Langford, W. F., ‘Hopf bifurcation with non-semisimple 1:1 resonance’, Nonlinearity 13, 1990, 825–850.

    Google Scholar 

  26. Wehrli, Ch. and O'Reilly, O., Nonlinear Vibrations, ETH-Zurich, Institut für Mechanik (unpublished lecture notes), 1992.

  27. Ziegler, H., ‘Die Stabilitatskriterien der Elastomechanik’, Ingenieur-Archiv 20, 1952, 49–56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Reilly, O.M., Malhotra, N.K. & Namachchivaya, N.S. Some aspects of destabilization in reversible dynamical systems with application to follower forces. Nonlinear Dyn 10, 63–87 (1996). https://doi.org/10.1007/BF00114799

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114799

Key words

Navigation