Skip to main content
Log in

Superconductivity in NbGe2 and isostructural C-40 compounds

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

The superconductivity of NbGe2 and isostructural C-40 compounds has been studied in a quantitative manner. The high transition temperatures T c = 16 k exhibited by sputtered films of NbGe2 are shown to be an intrinsic property of the compound and are attributed to the degree of order produced during the formation process. The roles of excess germanium and thermal effects are also discussed for NbGe2. One of the major conclusions established in this study is that a new crystal structure type, namely the hexagonal C-40 system, is superconducting. Four binary compounds are shown to exhibit superconductivity; they are NbGe2 T c = 16 k, NbSi2 T c =2.9 k, TaSi2 T c = 4.4 k, and TaGe2 T c = 2.7 k. Even though superconductivity has been demonstrated on these compounds, the mechanism responsible for the superconductivity has not been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hulm and R. Blaugher, Phys. Rev. 123, 1569 (1961).

    Google Scholar 

  2. G. Gladstone, M. Jensen, and J. Schrieffer in Superconductivity, R. D. Parks, ed. (Marcel Dekker, New York, 1969).

    Google Scholar 

  3. B. W. Roberts, in Intermetallic Compounds, J. Westbrook, ed. (Wiley, New York, 1967), p. 581.

    Google Scholar 

  4. J. Labbé and J. Friedel, J. Phys. (Paris) 27, 153 (1966).

    Google Scholar 

  5. J. Labbé and E. van. Reuth, Phys. Rev. Lett. 24, 1232 (1970).

    Google Scholar 

  6. A. Sweedler, D. Cox, S. Moehlecke, R. Jones, L. Newkirk, and F. Valencia, J. Low. Temp. Phys. 24, 645 (1976).

    Google Scholar 

  7. R. Hein, J. Cox, R. Blaugher, R. Waterstrat, E. van Reuth, in Proc. of the Int. Conf. on the Science of Superconductivity (Stanford, 1969) (North-Holland, Amsterdam, 1971).

    Google Scholar 

  8. A. K. Ghosh, Ph.D. Thesis, University of Rochester (1976).

  9. A. K. Ghosh and D. H. Douglass, Phys. Rev. Lett. 37, 32 (1976).

    Google Scholar 

  10. J. M. Andrews and J. C. Phillips, Phys. Rev. Lett. 35, 56 (1976).

    Google Scholar 

  11. G. F. Hardy and J. K. Hulm, Phys. Rev. 93, 1004 (1954).

    Google Scholar 

  12. .W. B. Pearson, The Crystal Chemistry and Physics of Metals and Alloys Wiley-Interscience, New York, 1972).

    Google Scholar 

  13. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2 (Pergamon Press, Oxford, 1967).

    Google Scholar 

  14. D. A. Robins, Phil. Mag. 3, 313 (1958).

    Google Scholar 

  15. J. P. Suchet, Crystal Chemistry and Semiconduction in Transition Metal Binary Compounds (Academic Press, New York, 1971).

    Google Scholar 

  16. A. S. Berezhoni, Silicon and its Binary Systems (Consultants Bureau, New York, 1960).

    Google Scholar 

  17. M. Hansen, Constitution of Binary Alloys, 2nd Ed. (McGraw-Hill, New York, 1958).

    Google Scholar 

  18. F. J. Cadieu, J. Low Temp. Phys. 3, 393 (1970).

    Google Scholar 

  19. G. R. Johnson, Ph.D. Thesis, University of Rochester (1973).

  20. L. A. Pendrys, Ph.D. Thesis, University of Rochester (1975).

  21. F. Cadieu, in Superconductivity in d- and f-Band Metals, D. Douglass, ed. (AIP, New York, 1972).

    Google Scholar 

  22. C. S. Barrett and T. Massalski, Structure of Metals (McGraw-Hill, New York, 1966), p. 155.

    Google Scholar 

  23. J. Poate, L. Testardi, A. Storm, and W. Augustyniak, Phys. Rev. Lett. 35, 1290 (1975).

    Google Scholar 

  24. A. K. Ghosh, private communication.

  25. T. Claeson, J. Ivarsson, and S. Rasmussen, J. Appl. Phys. 48, 3998 (1977).

    Google Scholar 

  26. R. Laibowitz, private communication.

  27. D. Allender, J. Bray, and J. Bardeen, Phys. Rev. B 7, 1020 (1973).

    Google Scholar 

  28. S. Srinivasan and S. Jha, Phys. Rev. B 18, 2169 (1978).

    Google Scholar 

  29. K. Keskar, T. Yamashita, and Y. Onodera, Japan J. Appl. Phys. 10, 370 (1971).

    Google Scholar 

  30. H. Nowotny, A Searcy, J. Orr, J. Phys. Chem. 60, 677 (1956).

    Google Scholar 

  31. J. Jorda, R. Flükiger, and J. Muller, preprint (to be published in J. Less-Common Metals).

  32. A. Braginski, J. Gavaler, G. Roland, M. Daniel, M. Janocko, and A. Santhanam, IEEE Trans. MAG-13, 300 (1977).

    Google Scholar 

  33. J. Thompson, M. Maley, L. Newkirk, and F. Valencia, Phys. Lett. 57A, 351 (1976).

    Google Scholar 

  34. J. Carpenter and A. Searcy, J. Am. Chem. Soc. 78, 2079 (1956).

    Google Scholar 

  35. V. M. Pan, V. Latysheva, and E. Shishkin, in Physics and Metallurgy of Superconductors, E. Savitskii and V. Baron, eds. (Consultants Bureau, New York, 1970).

    Google Scholar 

  36. J. Hanak, J. Gittleman, and J. Pellicane, J. Appl. Phys. 41, 4958 (1970).

    Google Scholar 

  37. R. Flükiger, J. Staudenmann, and P. Fischer, J. Less-Common Metals 50, 253 (1976).

    Google Scholar 

  38. P. S. Rudman, in Intermetallic Compounds, J. Westbrook, ed. (Wiley, New York, 1967), p. 424.

    Google Scholar 

  39. R. M. Rose, in The Science and Technology of Superconductivity, W. Gregory, W. Matthews, and E. Edelsack, eds. (Plenum Press, New York, 1973), Vol. 1, p. 306.

    Google Scholar 

  40. A. K. Ghosh and D. H. Douglass, J. Low Temp. Phys. 27, 487 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research supported in part by the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knoedler, C.M., Douglass, D.H. Superconductivity in NbGe2 and isostructural C-40 compounds. J Low Temp Phys 37, 189–218 (1979). https://doi.org/10.1007/BF00114067

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114067

Keywords

Navigation