Skip to main content
Log in

Flux-line cutting in type II superconductors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Experimental evidence for flux-line cutting in superconductors (intersection and cross-joining of singly quantized vortices) is briefly reviewed. The interaction energy between two straight vortices tilted at an angle α (≠ 0)is then shown to be finite in the London model, i.e., in the limit of vanishing core radius. Next, the activation energy and maximum interaction force are calculated for the vortices in an analytic approximation to the Ginzburg-Landau theory. Here two competing interactions determine the behavior. Electromagnetic repulsion (0 < α < π/2) varies as cos α and decays over distances scaled by the penetration depth λ, while core attraction is independent of α and varies over distances scaled by the coherence length ξ. The force is always repulsive at large flux-line separation (0 < α < π/2) and its maximum decreases rapidly as κ decreases, so that flux-line cutting isexpected to be more probable in low-κ materials. The calculations provide a basis for explaining longitudinal flux-flow resistance as well as some intriguing magnetization behavior in the same configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Abrikosov, Zh. Eksp. Teor. Fiz. 32, 1442 (1957); [Sov. Phys.-JETP 5, 1174 (1957)].

    Google Scholar 

  2. P. W. Anderson and Y. B. Kim, Rev. Mod. Phys. 36, 39 (1964).

    Google Scholar 

  3. H. London and D. G. Walmsley, in Proceedings 11th Int. Conf. Low Temp. Phys. (St. Andrews, 1968), p. 879.

  4. K. Yasukochi, T. Ogasawara, Y. Kubota, and K. Maryuama, in Proceedings 12th Int. Conf. Low Temp. Phys. (Academic Press of Japan, Kyoto, Japan, 1970), p. 178.

    Google Scholar 

  5. D. G. Walmsley, J. Phys. F 2, 510 (1972).

    Google Scholar 

  6. D. G. Walmsley and W. E. Timms, J. Phys. F 3, L203 (1973).

    Google Scholar 

  7. J. F. Nicholson and P. T. Sikora, J. Low Temp. Phys. 17, 275 (1974).

    Google Scholar 

  8. T. Ezaki and F. Irie, J. Phys. Soc. Japan 40, 382 (1976).

    Google Scholar 

  9. W. E. Timms and D. G. Walmsley, J. Phys. F 6, 2107 (1976).

    Google Scholar 

  10. D. G. Walmsley and W. E. Timms, J. Phys. F 7, 2373 (1977).

    Google Scholar 

  11. C. J. Bergeron, Appl. Phys. Lett. 3, 63 (1963).

    Google Scholar 

  12. A. M. Campbell and J. E. Evetts, Adv. Phys. 21, 199 (1972).

    Google Scholar 

  13. J. R. Clem, Phys. Lett. 54A, 452 (1975).

    Google Scholar 

  14. J. R. Clem, Phys. Rev. Lett. 38, 1425 (1977).

    Google Scholar 

  15. J. R. Cave, Ph.D. Thesis, University of Cambridge (1978), unpublished.

  16. J. R. Cave and J. E. Evetts, Phil. Mag. B 37, 111 (1978).

    Google Scholar 

  17. B. Makiej, A. Sikora, S. Golab, and W. Zacharko, in International Discussion Meeting on Flux Pinning in Superconductors (Akademie der Wissenschaften in Göttingen, Sonnenberg, 1974), p. 305.

    Google Scholar 

  18. B. Makiej, S. Golab, A. Sikora, E. Trojnar, and W. Zacharko, in Proceedings 14th Int. Conf. Low Temp. Phys. (North-Holland, Amsterdam, 1975), Vol. 2, p. 141.

    Google Scholar 

  19. B. D. Josephson, Phys. Rev. 152, 211 (1966).

    Google Scholar 

  20. W. E. Timms and D. G. Walmsley, Phys. Stat. Sol. (b) 71, 741 (1975).

    Google Scholar 

  21. E. H. Brandt, J. Low Temp. Phys. 26, 735 (1977).

    Google Scholar 

  22. L. Kramer, Phys. Rev. B 3, 3821 (1971).

    Google Scholar 

  23. J. R. Clem, J. Low Temp. Phys. 18, 427 (1974).

    Google Scholar 

  24. J. R. Clem, in Proceedings 14th Int. Conf. Low Temp. Phys. (North-Holland, Amsterdam, 1975), Vol. 2, p. 285.

    Google Scholar 

  25. E. H. Brandt, J. Low Temp. Phys. 28, 263, 291 (1977).

    Google Scholar 

  26. E. H. Brandt, J. Low Temp. Phys. 26, 709 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences Division, and by the Deutsche Forschungsgemeinschaft.

On leave from Max-Planck-Institut für Metallforschung, Institut für Physik, Stuttgart, West Germany.

On leave from New University of Ulster, Coleraine, Northern Ireland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandt, E.H., Clem, J.R. & Walmsley, D.G. Flux-line cutting in type II superconductors. J Low Temp Phys 37, 43–55 (1979). https://doi.org/10.1007/BF00114055

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00114055

Keywords

Navigation