Skip to main content
Log in

Viscoelastic rocket grain fracture analysis

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

A viscoelastic fracture analysis has been developed for rocket grain fracture predictions. The fracture analysis uses a stress intensity factor technique to predict crack velocity histories under thermal and pressurization loading conditions. The theory is compared with two-dimensional pressurized tests of two typical rocket motor geometries using the viscoelastic material, Solithane 113.

Résumé

On a développé une méthode d'analyse de la rupture viscoélastique, en vue de prédire la rupture d'éléments de combustibles de fusée. L'analyse fait appel à la notion du facteur d'intensité des contraintes pour présager de l'évolution de la vitesse de propagation sous des conditions définies de sollicitations thermiques et de pressurisation.

La théorie est comparée avec les résultats d'essais bidimensionnels de mise sous pression de deux configurations géométriques typiques de moteur à fusée utilisant un matériau viscoélastique, le Solithane 113.

Zusammenfassung

Eine zähflüssigelastische Bruchanalyse wurde zur Bruchvoraussagung von Raketentreibstoff entwickelt. Die Bruchanalyse wendet ein Verfahren von Spannungsintensitätsfaktoren an, um den Ablauf der Rißgeschwindigkeit unter thermischer und Druckbelastungs-Bedingungen vorauszusagen. Die Theorie wird mit zweidimensionalen Druckversuchen für zwei typische Geometrien von Raketenmotoren die das zähflüssige Material Solithane 113 benützen, verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. P. Anderson, V. L. Ruggles and G. S. Stebor, Use of Finite Element Computer Programs in Fracture Mechanics, International Journal of Fracture Mechanics, 7, 1 (1971).

    Google Scholar 

  2. E. C. Francis, G. H. Lindsey and R. R. Parmerter, Pressurized Crack Behavior in Two-Dimensional Rocket Motor Geometries, Journal of Spacecraft and Rockets, 9, 6 (1972) 415–419.

    Google Scholar 

  3. J. S. Noel and L. D. Webb, AFRPL-TR-70-10, March 1970.

  4. A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society (London), 221 (1920) 163–198.

    Google Scholar 

  5. M. L. Williams, Initiation and Growth of Viscoelastic Fracture, International Journal of Fracture Mechanics, 1, 4 (1965).

    Google Scholar 

  6. M. L. Williams, The Relation of Continuum Mechanics to Adhesive Fracture, Journal of Adhesion, 4 (1972) 307–332.

    Google Scholar 

  7. S. R. Swanson, Crack Propagation in Solid Rocket Propellant Grains Under Ignition Loading, M. S. Thesis, Department of Mechanical Engineering, University of Utah, June 1968.

  8. S. K. Chan, I. S. Tuba and W. K. Wilson, On the Finite Element Method in Linear Fracture Mechanics, Scientific Paper 68–107-FMPWR-P1, Westinghouse Research Laboratories, Pittsburgh, Pa., April 2 (1968).

    Google Scholar 

  9. A. S. Kobayashi, D. E. Maiden, B. J. Simon and S. Iida, Application of Finite Element Analysis to Two-Dimensional Problems in Fracture Mechanics, Contract Nonr-477(39), Technical Report No. 5, October 1968; ASME Paper No. 69-WA/PVP-12 (1969).

  10. L. I. Deverall and G. H. Lindsey, A Comparison of Numerical Methods for Determining Stress Intensity Factors. Transactions of the ASME, Journal of Basic Engineering, (1972) 508–509.

  11. H. K. Mueller, Stress-Intensity Factor and Crack Opening for a Linearly Viscoelastic Strip with a Slowly Propagating Central Crack, International Journal of Fracture Mechanics, 7, 2 (1971).

    Google Scholar 

  12. H. K. Mueller and W. G. Knauss, Crack Propagation in a Linearly Viscoelastic Strip, Journal of Applied Mechanics, 38, 2 (1971) 483.

    Google Scholar 

  13. W. G. Knauss, Delayed Failure—The Griffith Problem for Linearly Viscoelastic Materials, International Journal of Fracture Mechanics, 6, 1 (1970) 7–20.

    Google Scholar 

  14. G. I. Barrenblatt, The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Advances In Applied Mechanics, VII, (1962).

  15. W. G. Knauss and H. Dietman, Crack Propagation Under Variable Load Histories in Linearly Viscoelastic Solids, International Journal of Engineering Sciences, 8 (1970) 643–656.

    Google Scholar 

  16. G. R. Irwin, Fracture, Encyclopedia of Physics, Springer, Berlin, VI (1958) 551–590.

    Google Scholar 

  17. E. B. Becker and J. J. Brisbane, Application of the Finite Element to Stress Analysis of Solid Propellant Rocket Grains, Report No. S76, Rohm and Haas Company, Redstone Research Division, Huntsville, Alabama, (1966).

    Google Scholar 

  18. E. C. Francis and C. H. Carlton, Some Aspects of Nonlinear Mechanical Behavior of a Composite Propellant, Journal of Spacecraft and Rockets, 6, 1 (1969) 65–69.

    Google Scholar 

  19. G. C. Sih, Three-Dimensional Stress-State in a Cracked Plate, International Journal of Fracture Mechanics, 7 (1971) 39–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francis, E.C., Carlton, C.H. & Thompson, R. Viscoelastic rocket grain fracture analysis. Int J Fract 10, 167–180 (1974). https://doi.org/10.1007/BF00113924

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00113924

Keywords

Navigation