Skip to main content
Log in

The effect of geographical isolation on enzyme polymorphism of heavy-metal tolerant populations of Minuartia verna (L) Hiern.

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Isolated metal-tolerant populations of Minuartia verna exhibit a remarkable amount of genetic polymorphism (P = 0.44). Different enzyme variants were fixed in different populations. No evidence was found for a genotype-environment relation for malate metabolizing enzymes and Zn-tolerant populations. An activation energy analysis of malate dehydrogenase did not support the concept of an adaptive strategy related to temperature between alpine and non-alpine populations.

No good evidence was found for a multilocus genotype association either. The pattern of isoenzyme distribution within and between populations could be explained only by long distance isolation and founder effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allard, R. W., Kahler, A. L. & Clegg, M.T., 1977. Estimation of mating cycle components of selection in plants. Pp. 1–21. In: F. B. Christiansen & T. M. Fenches (eds) Measuring Selection in Natural Populations. Springer Verlag Berlin.

    Google Scholar 

  • Babbel, G. R. & Selander, R. K., 1974. Genetic variability in edaphically restricted and widespread plant series. Evolution 28: 619–630.

    Google Scholar 

  • Baker, A. J. M., 1978. The uptake of zine and calcium from solution culture by zine-tolerant and non-tolerant Silene maritima With. in relation to calcium supply. New Phytol. 81: 321–330.

    Google Scholar 

  • Bortenschlager, S., 1972. Der pollenanalytische Nachweis von Gletscher- und Klimaschwankungen in Mooren der Ostalpen. Ber. Dtsch. Bot. Ges. 85: 113–122.

    Google Scholar 

  • Bröker, W., 1963. Genetische-physiologische Untersuchungen über die Zinkverträglichkeit von Silene inflata Sm. Flora (Jena) 153: 122–156.

    Google Scholar 

  • Brown, A. H. D., 1979. Enzyme poplymorphism in plant populations. Theor. Pop. Biol. 15: 1–42.

    Google Scholar 

  • Brown, A. H. D., Marshall, D. R. & Albrecht, L., 1974. The maintenance of alcohol dehydrogenase polymorphism in Bromus mollis L. Aust. J. biol. Sci. 27: 545–559.

    Google Scholar 

  • Cooke, J. A., Johnson, M. S., Davison, A. W. & Bradshaw, A. D., 1976. Fluoride in plants colonizing fluorspar mine waste in the Peak District and Weardale. Environ. Pollut. 11: 9–23.

    Google Scholar 

  • Ernst, W. H. O., 1965. Uber den Einfluss des Zinks auf die Keimung von Schwermetallpflanzen und auf die Entwicklung der Schwermetallpflanzengesellschaft. Ber. Dtsch. Bot. Ges. 78: 205.

    Google Scholar 

  • Ernst, W. H. O., 1974. Schwermetallvegetation der Erde. Gustav Fischer Verlag, Stuttgart.

    Google Scholar 

  • Ernst, W. H. O., 1975. Physiology of heavy metal resistance in plants. Proc. Int. Conf. Heavy Metals in the Environment, Toronto 1975, vol. 2, pp. 121–136.

    Google Scholar 

  • Gottlieb, L. D., 1981. Electrophoretic evidence and plant populations. Progr. in Phytochem. 7: 1–46.

    Google Scholar 

  • Gregory, R. P. G. & Bradshaw, A. D., 1965. Heavy metal tolerance in populations of Agrostis tenuis Sibth. and other grasses. New Phytol. 64: 131–143.

    Google Scholar 

  • Johnson, G. B., 1976. Enzyme polymorphism and adaptation in alpine butterflies. Ann. Mo. Bot. Gard. 63: 248–261.

    Google Scholar 

  • Johnson, G. B., 1979. Enzyme polymorphism: genetic variation in the physiological phenotype. Pp. 62–83. In: O. T. Solbrig (ed.), Topics in Plant Population Biology, Columbia University Press.

  • Johnson, M. S., Putwain, P. D. & Hollyday, R. J., 1978. Wildlife conservation value of derelict metalliferous mine workings in Wales. Biol. Conserv. 14: 131–148.

    Google Scholar 

  • Kahler, A. L., Allard, R. W., Krzakowa, M., Wehrahn, C. F. & Nevo, E., 1980. Associations between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel. Theor. appl. Genet. 56: 31–47.

    Google Scholar 

  • Kakes, P., 1977. Genecological investigations on zine plants II. Introgression in a small population of the zine violet Viola calaminaria ssp. westfalia (Leg.) Ernst. Acta bot. Neerl. 26: 385–400.

    Google Scholar 

  • Keeley, J. E. & Franz, E. H., 1979. Alcoholic fermentation in swamp and upland populations of Nyssa sylvatica: temporal changes in adaptive strategy. Amer. Natur. 113: 587–592.

    Google Scholar 

  • Loveless, M. D. & Hamrick, J. L., 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15: 65–95.

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Lewis Farr, A. & Randall, R. S., 1951. Protein measurement with folin reagent. J. biol. Chem. 193: 265–275.

    Google Scholar 

  • Marshall, D. R., Broué, P. & Pryor, A. J., 1973. Adaptive significance of alcohol dehydrogenase isozymes in maize. Nature New Biol. 244: 16–17.

    Google Scholar 

  • Mathys, W., 1977. The role of malate, oxalate and mustard oil glucosides in the evolution of zineresistance in herbage plants. Physiol. Plant 40: 130–136.

    Google Scholar 

  • McNaughton, S. J., 1972. Enzymic thermal adaptations: the evolution of homeostasis in plants. Amer. Natur. 106: 165–172.

    Google Scholar 

  • McNaughton, S. J., 1974. Natural selection at the enzyme level. Amer. Natur. 108: 616–624.

    Google Scholar 

  • McNeilly, T. S., 1968. Evolution in closely adjacent plant populations III Agrostis tenuis on a small copper mine. Heredity 23: 99–108.

    Google Scholar 

  • Mensen Da Silva, R., 1971. Analysis of Krebs cycle and related acids in Guinea Pig tissues by gasliquid chromatography. Anal. Chem. 43: 1031–1035.

    Google Scholar 

  • Nevo, E., 1978. Genetic variation in natural populations: patterns and theory. Theor. Pop. Biol. 13: 121–177.

    Google Scholar 

  • Nevo, E., Zohary, D., Brown, A. H. D. & Haber, M., 1979. Genetic diversity and environmental associations of wild barley, Hordeum spontaneum, in Israel. Evolution 33: 815–833.

    Google Scholar 

  • Oberdorfer, E., 1970. Pflanzensoziologische Exkursionsflora für Süddeutschland. Verlag Eugen Ulmer.

  • Proctor, J. & Woodell, S. R. J., 1975. The ecology of serpentine soils. Adv. ecol. Res. 9: 255–366.

    Google Scholar 

  • Rick, C. M., Fobes, J. F. & Holle, M., 1977. Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant. Syst. Evol. 127: 139–170.

    Google Scholar 

  • Schubert, R., 1954. Zur Systematik und Pflanzen-geographie der Charakterpflanzen der mitteldeutschen Schwermetallpflanzengesellschaften. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg, Math.-Nat. Kl. 3: 863–882.

    Google Scholar 

  • Simon, J. P., 1979. Adaptation and acclimation of higher plants at the enzyme level: latitudinal variations of thermal properties of NAD malate dehydrogenase in Lathyrus japonieus Willd. (Leguminosae). Oecologia (Berl.) 39: 273–287.

    Google Scholar 

  • Soulé, M., 1971. The variation problem: the geneflow-variation hypothesis. Taxon 20: 37–50.

    Google Scholar 

  • Soulé, M., 1976. Allozyme variation: Its determinants in space and time. Pp. 60–77. In: F. Ayala (ed.) Molecular Evolution. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Stebbins, G. L., 1942. The genetic approach to problems of rare and endemic species. Madrono 6: 241–258.

    Google Scholar 

  • Thorn, K., 1958. Die dealpine Felsheiden der Frankenalb. Sitzungsber. Physik.-med. Soc. Erlangen. 78: 163–165, 193–195.

    Google Scholar 

  • Van Valen, L., 1965. Morphological variation and width of ecological niche. Amer. Natur. 99: 377–390.

    Google Scholar 

  • Verkleij, J. A. C., De Boer, A. M. & Lugtenborg, T. F., 1980. On the ecogenetics of Stellaria media (L.) Vill. and Stellaria pallida (Dum.) Piré from abandoned arable fields. Occologia 46: 354–359.

    Google Scholar 

  • Verkleij, J. A. C., Bast-Cramer, W. B. & Levering, H., 1985. Effects of heavy-metal stress on the genetic structure of populations of Silene cucubalus. In: Structure and functioning of plant populations/2 (J. Haeck & J. W. Woldendorp eds), pp. 355–365.

  • Verkleij, J. A. C., Lolkema, P. C. & Ernst, W. H. O., 1987. The effect of heavy metals on isozyme gene expression in Silene cucubalus. In: Isozymes: Current topics in biological and medical research. Volume 16, pp. 209–221. Alan R. Liss Inc.

  • Vidal, J., Cavalie, F. & Cadal, P., 1976. Etude de la phosphoenol-pyruvate carboxylase du haricot et du sorgho par électrophorèse sur gel de polyacrylamide. Plant Science Letters 7: 265–270.

    Google Scholar 

  • Walter, H. & Lieth, H., 1976. Klimadiogramm-Weltatlas (ed. G. Fisher). Jena.

  • Wild, H., 1971. The taxonomy, ecology and possible method of evolution of a new metalliferous species of Dicoma Cass. (Compositae). Mitt. Bot. Staatssamml. München 10: 266–274.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkleij, J.A.C., Lugtenborg, T.F. & Ernst, W.H.O. The effect of geographical isolation on enzyme polymorphism of heavy-metal tolerant populations of Minuartia verna (L) Hiern.. Genetica 78, 133–143 (1988). https://doi.org/10.1007/BF00058845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058845

Keywords

Navigation