, Volume 1, Issue 2–3, pp 121–132 | Cite as

Microbial degradation of chelating agents used in detergents with special reference to nitrilotriacetic acid (NTA)

  • Thomas Egli
  • Matthias Bally
  • Thomas Uetz


The extensive use of phosphate-based detergents and agricultural fertilizers is one of the main causes of the world-wide eutrophication of rivers and lakes. To ameliorate such problems partial or total substitution of phosphates in laundry detergents by synthetic, non-phosphorus containing complexing agents is practiced in several countries. The physiological, biochemical and ecological aspects of the microbial degradation of the complexing agents most frequently used, such as polyphosphates, aminopolycarboxylates (especially of nitrilotriacetic acid), and phosphonates are reviewed.

Key words

complexing agents detergent builders wastewater treatment NTA EDTA phosphonates 



Acridine orange direct counts




















Immunofluorescence test


Molecular weight








Phenazine methosulfate


Sodium dodecylsulfate polyacrylamide gel electrophoresis






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bunch, RL & Ettinger, MB (1967) Biodegradability of potential organic substitutes for phosphates. Proc. Purdue University International Waste Conference. Engineering Bulletin of the Purdue University, Engineering Extension Series 129: 393–396Google Scholar
  2. Belly, RT, Lauff, JJ & Goodhue, CT (1975) Degradation of ethylenediaminetetraacetic acid by microbial populations from an aerated lagoon. Appl. Microbiol. 29: 787–794Google Scholar
  3. Berth, P, Berg, M & Hachmann, K (1983) Mehrkomponentensysteme als Waschmittelbuilder. Tenside and Detergents 20: 276–282Google Scholar
  4. Bernhardt, H (1990) An ecological assessment of organic phosphate substitutes. Vom Wasser 74: 159–176Google Scholar
  5. Cripps, RE & Noble, AS (1973) The metabolism of nitrilotriacetate by a Pseudomonad. Biochem. J. 136: 1059–1068Google Scholar
  6. Daughton, CG, Cook, AM & Alexander, M (1979a) Bacterial conversion of alkylphosphonates to natural products via carbon-phosphorus bond cleavage. J. Agric. Food Chem. 27: 1375–1382Google Scholar
  7. Daughton, CG, Cook, AM & Alexander, M (1979b) Phosphate and soil binding: factors limiting bacterial degradation of ionic phosphorus-containing pesticides. Appl. Environ. Microbiol. 37: 605–609Google Scholar
  8. De Vos, P & De Ley, J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomanas ribosomal ribonucleic acid cistrons. Int. J. Syst. Bacteriol. 33: 487–509Google Scholar
  9. Dietz, F (1987) Neue Messergebnisse über die Belastung von Trinkwasser mit EDTA. Wasser Abwasser gwf 128: 286–288Google Scholar
  10. Egli, T (1988) (An)aerobic breakdown of chelating agents used in household detergents. Microbiol. Sci. 5: 36–41Google Scholar
  11. Egli, T, Weilenmann, H-U, El-Banna, T & Auling, G (1988) Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst. Appl. Microbiol. 10: 297–305Google Scholar
  12. El-Banna T (1989) Characterization of some unclassified Pseudomonas species PhD thesis, Tanta University, EgyptGoogle Scholar
  13. Epstein, SS (1972) Toxicological and environmental implications of the use of nitrilotriacetic acid as a detergent builder. Int. J. Environ. Stud. 2: 291–300Google Scholar
  14. Firestone, MK & Tiedje, JM (1978) Pathway of degradation of nitrilotriacetate by a Pseudomonas species. Appl. Environ. Microbiol. 35: 955–961Google Scholar
  15. Firestone, MK, Aust, SD & Tiedje, JM (1978) A nitrilotriacetic acid monooxygenase with conditional NADH-oxidase activity. Arch. Biochem. Biophys. 190: 617–623Google Scholar
  16. Focht, DD & Joseph, HA (1971) Bacterial degradation of nitrilotriacetic acid. Can. J. Microbiol. 17: 1553–1556Google Scholar
  17. Gerike, P & Fischer, WK (1979) A correlation study of biodegradability determinations with various chemicals in various tests. Ecotoxicol. Environ. Safety 3: 159–173Google Scholar
  18. Giger W, Ponusz H, Alder A, Baschnagel D, Renggli D & Schaffner C (1987) Auftreten und Verhalten von NTA und EDTA in schweizerischen Gewässern und im Trinkwasser. EAWAG Jahresbericht, pp 9–12Google Scholar
  19. Griffith, EJ, Beeton, A, Spencer, JM & Mitchell, DT (1973) Environmental Phosphorus Handbook. Wiley, New YorkGoogle Scholar
  20. Haschke, H & Marlock, G (1974) Untersuchungen über mikrobiologisch-physiologisch relevante Eigenschaften bestimmter Poly(hydroxycarboxylat)-Komplexbildner (1. Mitteilung). Tenside and Detergents 11: 57–74Google Scholar
  21. Harold, FM (1966) Inorganic polyphosphates in biology: Structure, metabolism, and function. Bacteriol. Rev. 30: 772–794Google Scholar
  22. Hauptausschuss ‘Phosphate und Wasser’ (1978) Phosphor-Wege und Verbleib in der Bundesrepublik Deutschland, Verlag Chemie, WeinheimGoogle Scholar
  23. Heinke GW (1969) Hydrolysis of condensed phosphates in Great Lakes Waters. Proc. 12th Conference on the Great Lakes ResearchGoogle Scholar
  24. Ikemoto, S, Suzuki, K, Kaneko, T & Komagata, K (1980) Characterization of strains of Pseudomonas maltophila which do not require methionine. Int. J. Syst. Bacteriol. 30: 437–447Google Scholar
  25. Jakobi, G, Lühr, A, Schwuger, MJ, Jung, D, Fischer, W & Gloxhuber, C (1983) Waschmittel. In: Ullmanns Encyklopädie der technischen Chemie (4th edition), Vol 24 (pp 63–160). Verlag Chemie, WeinheimGoogle Scholar
  26. Kakii, K, Yamaguchi, H, Iguchi, Y, Teshima, M, Shirakashi, T & Kuriyama, M (1986) Isolation and growth characteristics of nitrilotriacetate-degrading bacteria. J. Ferment. Technol. 64: 103–108Google Scholar
  27. Kemmler, J & Egli, T (1990) Nitrilotriacetat-abbauende Mikroorganismen. Wasser Abwasser gwf 131: 251–255Google Scholar
  28. Kemper, HC, Martens, RJ, Nooi, JR & Stubbs, CE (1975) Nitrogen- and phosphorus-free strong sequestering builders. Tenside and Detergents 12: 47–51Google Scholar
  29. Kulaev, IS (1979) The Biochemistry of Inorganic Polyphosphates. Wiley, ChichesterGoogle Scholar
  30. Kulaev, IS & Vagabov, VM (1983) Polyphosphate metabolism in micro-organisms. Adv. Microb. Physiol. 24: 83–171Google Scholar
  31. La Nauze, JM, Rosenberg, H & Shaw, DC (1970) The enzymic cleavage of the carbon phosphorus bond: purification and properties of phosphonatase. Biochim. Biophys. Acta 212: 332–350Google Scholar
  32. Larson, R & Ventullo, R (1986) Kinetics of biodegradation of NTA in an estuarine environment. Ecotoxicol. Environ. Safety 12: 166–179Google Scholar
  33. Lerbs, W, Stock, M & Parthier, B (1990) Physiological aspects of glyphosate degradation in Alcaligenes sp. strain GL. Arch. Microbiol. 153: 146–150Google Scholar
  34. Lockhart, HB & Blakeley, RV (1975) Aerobic photodegradation of Fe(III)-(Ethylenedinitrilo)tetraacetate(ferric EDTA). Environ. Sci. Technol. 9: 1035–1038Google Scholar
  35. Madson, EL & Alexander, M (1985) Effects of chemical speciation on the mineralization of organic compounds by microorganisms. Appl. Environ. Microbiol. 50: 342–349Google Scholar
  36. Metzner, EA, Crutchfield, MM, Langguth, RP & Swisher, RD (1973) Organic builder salts as replacements for sodium tripolyphosphate (II). Tenside and Detergents 10: 239–245Google Scholar
  37. Metzner, G & Nägerl, HD (1982) Environmental behaviour of two water-conditioning agents based on phosphonate and polyacrylate. Tenside and Detergents 19: 23–29Google Scholar
  38. McFeters, GA, Egli, T, Wilberg, E, Alder, A, Schneider, R, Snozzi, M & Giger, W (1990) Activity and adaptation of nitrilotriacetate (NTA)-degrading bacteria: field and laboratory studies. Water Res. 2: 875–881Google Scholar
  39. Means, JL, Kucak, T & Crerar, DA (1980) Relative degradation rates of NTA, EDTA and DTPA and environmental implications. Environ. Pollut. Ser. B (Series B) 1: 45–60Google Scholar
  40. Mottola, HA (1974) Nitrilotriacetic acid as a chelating agent: applications, toxicology and bioenvironmental impact. Toxicol. Environ. Chem. 44: 81–113Google Scholar
  41. Opgenorth, HJ (1987) Umweltverträglichkeit von Polycarboxylaten. Tenside and Detergents 24: 366–369Google Scholar
  42. Pfaender, FK, Shimp, RJ & Larson, RJ (1975) Adaptation of estuarine ecosystems to the biodegradation of nitrilotriacetic acid: effects of preexposure. Environ. Toxicol. Chem. 4: 587–593Google Scholar
  43. Pickaver, AH (1976) The production of N-nitrosoiminodiacetate from nitrilotriacetate and nitrate by microorganisms growing in mixed culture. Soil Biol. Biochem. 8: 13–17Google Scholar
  44. Pipke, R, Amrhein, N, Jacob, GS, Schaefer, J & Kishore, GM (1987) Metabolism of glyphosate in an Arthrobacter sp. GLP-1. Eur. J. Biochem 165: 267–273Google Scholar
  45. Pipke, R & Amrhein, N (1988) Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC 13752. Appl. Environ. Microbiol. 54: 1293–1296Google Scholar
  46. Rao, NN, Roberts, MF & Torriani, A (1987) Polyphosphate accumulation and metabolism in Escherichia coli. In: Torriani-Gorini, A, Rothman, FG, Silver, S, Wright, A & Yagil, E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms (pp 213–219). American Society of Microbiology, WashingtonGoogle Scholar
  47. Rosenberg, H & La Nauze, JM (1967) The metabolism of phosphonates by microorganisms. The transport of aminoethyl-phosphonic acid in Bacillus cereus. Biochim. Biophys. Acta 141: 79–90Google Scholar
  48. Schneider, R (1984) Weltproduktion und-verbrauch an Seifen, Wasch-und Reinigungsmitteln 1980, 1981 and 1982. Tenside and Detergents 21: 212–215Google Scholar
  49. Schneider RS (1989) The NTA-monooxygenase from Pseudomonas sp. ATCC 29600. PhD thesis, ETH-Nr. 8824, ZürichGoogle Scholar
  50. Schowanek, D & Verstraete, W (1990a) Phosphonate utilization by bacterial cultures and enrichments from environmental samples. Appl. Environ. Microbiol. 56: 895–903Google Scholar
  51. Schowanek, D & Verstraete, W (1990b) Phosphonate utilization by bacteria in the presence of alternative phosphorus sources. Biodegradation 1: 43–53Google Scholar
  52. Shannon, JE & Lee, GF (1966) Hydrolysis of condensed phosphates in natural waters. Air Water Pollut Int. J. 10: 735–756Google Scholar
  53. Snozzi, M & Egli, T (1987) Purification of a NTA-monooxygenase. Proc. 4th European Congress on Biotechnology 3: 345Google Scholar
  54. Tiedje, JM (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Appl. Microbiol. 30: 327–329Google Scholar
  55. Tiedje, JM (1977) Influence of environmental parameters on EDTA biodegradation in soils and sediments. J. Environ. Qual. 6: 21–26Google Scholar
  56. Tiedje, JM (1980) Nitrilotriacetate: Hindsight and gunsight. In: Maki, AW, Dickson, KL & Cairns, J (Eds) Biotransformation and Fate of Chemicals in the Aquatic Environment (pp 114–119). ASM, WashingtonGoogle Scholar
  57. Tiedje, JM, Mason, BB, Warren, CB & Malek, EJ (1973) Metabolism of nitrilotriacetate by cells of Pseudomonas species. Appl. Microbiol. 25: 811–818Google Scholar
  58. Torriani-Gorini, A (1987) The birth and growth of the Pho regulon. In: Torriani-Gorini, A, Rothman, FG, Silver, S, Wright, A & Yagil, E (Eds) Phosphate Metabolism and Cellular Regulation in Microorganisms (pp 3–11). ASM, WashingtonGoogle Scholar
  59. Vollenweider R (1968) Die wissenschaftlichen Grundlagen der Seen- und Fliesswassereutrophierung unter besonderer Berücksichtigung der Phosphors und des Stickstoffs als Eutrophierungsfaktoren. OECD Report, ParisGoogle Scholar
  60. Wanner, U, Egli, T & Snozzi, M (1989) A dehydrogenase as the first step in the anaerobic pathway for nitrilotriacetate (NTA) degradation. In: Hamer, G, Egli, T & Snozzi, M (Eds) Mixed and Multiple Substrates and Feedstocks (pp 165–167). Hartung-Gorre, ConstanceGoogle Scholar
  61. Wanner, U, Kemmler, J, Weilenmann, HU, Egli, T, El-Banna, T & Auling, G (1990) Isolation and growth of a bacterium able to degrade nitrilotriacetic acid under denitrifying conditions. Biodegradation 1: 31–42Google Scholar
  62. Wehrli, E & Egli, T (1988) Morphology of nitrilotriacetate-utilizing bacteria. Syst. Appl. Microbiol. 10: 306–312Google Scholar
  63. Wilberg E (1990) Zur Physiologie und Ökologie Nitrilotriacetat (NTA) abbauender Bakterien. PhD thesis, ETH-Nr. 9015, ZürichGoogle Scholar
  64. Wong, PTS, Liu, D & McGirr, DJ (1973) Mechanism of NTA degradation by a bacterial mutant. Water Res 7: 1367–1374Google Scholar
  65. Zinder, B, Hertz, J & Oswald, HR (1984) Kinetic studies on the hydrolysis of sodium tripolyphosphate in sterile solution. Water Res 18: 509–512Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Thomas Egli
    • 1
  • Matthias Bally
    • 1
  • Thomas Uetz
    • 1
  1. 1.Swiss Federal Institute for Water Resources and Water Pollution ControlSwiss Federal Institutes of TechnologyDübendorfSwitzerland

Personalised recommendations