Journal of Engineering Mathematics

, Volume 22, Issue 4, pp 285–334 | Cite as

On shells of revolution with the Love-Kirchhoff hypotheses

  • F. Y. M. Wan
  • H. J. Weinitschke


On the occasion of the 100th anniversary of A.E.H. Love's fundamental paper on thin elastic shell theory, the present article summarizes a line of developments on shells of revolution related to the Love-Kirchhoff hypotheses which form the basis of Love's theory. The summary begins with the Günther-Reissner formulation of the linear theory which is shown to contain the classical first approximation shell theory as a special case. The static-geometric duality is deduced as a natural and immediate consequence of the more general theory. The repeated applications of this duality greatly simplify the solution process for boundary-value problems in shell theory, including the classical reduction of the axisymmetric bending problem and related recent reductions of shell equations for more general loadings to two simultaneous equations for a stress function and a displacement variable. In the nonlinear range, the article confines itself to Reissner's geometrically nonlinear theory of axisymmetric deformation of shells of revolution and Marguerre's shallow shell theory with special emphasis on recent results for elastic membranes, buckling of shells of revolution and applications of asymptotic methods.

With fondness and appreciation, the authors dedicate this article to their teacher, collaborator and friend, Professor Eric Reissner, in the year of his seventy-fifth anniversary.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aron: Das Gleichgewicht und die Bewegung einer unendlich dünnen, beliebig gekrümmten elastischen Schale, J. Reine u. Angew. Math. 78 (1874) 136–174.Google Scholar
  2. 2.
    J.G. Berry: On thin hemispherical shells subjected to concentrated edge moments and forces, Proc. 2nd Midwest. Conf. on Solid Mech. (1955) 25–44.Google Scholar
  3. 3.
    C.B. Biezeno: Über die Bestimmnng der Durchschlagskraft einer schwachgekrümmten kreisförmigen Platte, ZAMM 15 (1935) 10–22.Google Scholar
  4. 4.
    E. Bromberg: Non-linear bending of a circular plate under normal pressure, Comm. Pure Appl. Math. 94 (1956) 633–659.Google Scholar
  5. 5.
    E. Bromberg and J.J. Stoker: Non-linear theory of curved elastic sheets, Quart. Appl. Math. 3 (1945) 246–265.Google Scholar
  6. 6.
    B. Budiansky: Buckling of clamped shallow spherical shells, The Theory of Thin Elastic Shells (Proc. IUTAM Shell Symp., Delft, 1959; W. T. Koiter, ed.), North-Holland, Amsterdam (1960) 64–94.Google Scholar
  7. 7.
    B. Budiansky and J.L. Sanders, Jr.: On the best first order linear shell theory, Progress in Applied Mechanics (The Prager Anniversary Volume; D. Drucker, ed.), Macmillan (1963) 129–140.Google Scholar
  8. 8.
    R. Byrne, Jr.: Theory of small deformations of the thin elastic shells, Univ. Calif. Publ. in Math., New Series, 2 (1944) 103–152.Google Scholar
  9. 9.
    C.R. Calladine: The theory of thin shell structures 1888–1988 (Love Centenary Lecture), Proc. Inst. Mech. Engrs. 202 (1988) 1–9.Google Scholar
  10. 9. a.
    A.J. Callegari and E.L. Reiss: Nonlinear boundary value problems for the circular membrane, Arch. Rat. Mech. Anal. 31 (1968) 390–400.Google Scholar
  11. 10.
    A.J. Callegari, H.B. Keller, and E.L. Reiss: Membrane buckling: a study of solution multiplicity, Comm. Pure Appl. Math. 24 (1971) 499–521.Google Scholar
  12. 11.
    A.L. Cauchy: Sur les équations qui expriment les conditions d'équilibre ou les lois de mouvement interieur d'un corps solide, Exercises de Mathématique (ed. Cauchy), Paris Academy (1828).Google Scholar
  13. 12.
    L.S. Cheo and E.L. Reiss: Unsymmetric wrinkling of circular plates, Quart. Appl. Math. 31 (1973) 75–91.Google Scholar
  14. 13.
    V.S. Chernina: On the system of differential equations of equilibrium of shells of revolution under bending loads, Prik. Mat. Mek. (PMM) 23 (1959) 258–265.Google Scholar
  15. 14.
    W.Z. Chien: Asymptotic behavior of a thin clamped circular plate under uniform normal pressure at very large deflection, National Tsing Hua Univ. Sci. Repts. 5 (1948) 71–94.Google Scholar
  16. 15.
    R.A. Clark: On the theory of thin elastic toroidal shells, J. Math. & Phys. 24 (1950) 146–178.Google Scholar
  17. 16.
    R.A. Clark and O.S. Narayanaswamy: Nonlinear membrane problems for elastic shells of revolution, Proc. Sympos. Theory of Shells (L.H. Donnell Anniversary Volume; D. Muster, ed.), Univ. of Houston Press, Houston (1967) 80–110.Google Scholar
  18. 17.
    E. Cosserat and F. Cosserat: Théories des Corps Déformables, Hermann, Paris (1909).Google Scholar
  19. 18.
    R. W. Dickey: The plane circular elastic surface under normal pressure, Arch. Rat. Mech. Anal. 26 (1967) 219–236.Google Scholar
  20. 19.
    R. W. Dickey: Nonlinear bending of circular plates, SIAM J. Appl. Math. 30 (1976) 1–9.Google Scholar
  21. 20.
    L.H. Donnell: Stability of thin-walled tubes under torsion, NACA Tech. Rep. No. 479 (1933).Google Scholar
  22. 21.
    L.H. Donell: A new theory for the buckling of thin cylinders under axial compression and bending, Trans. ASME 56 (1934) 795–806.Google Scholar
  23. 22.
    M. Drmota, R. Scheidl, H. Troger and E. Weinmüller: On the imperfection sensitivity of complete spherical shells, Comput. Mechanics 2 (1987) 63–74.Google Scholar
  24. 23.
    Z. Elias: Civil Engineering, Ph.D. Dissertation, MIT, Cambridge, MA (1962).Google Scholar
  25. 24.
    W. Flügge: Die Stabilität der Kreiszylinderschale, Ing.-Arch. 3 (1932) 463–506.Google Scholar
  26. 25.
    A. Föppl: Vorlesungen über Technische Mechanik, Vol. 5, R. Oldenbourg, München (1907).Google Scholar
  27. 26.
    J.P. Frakes and J.G. Simmonds: Asymptotic solutions of the von Kármán equations for a circular plate under a concentrated load, J. Appl. Mech. 52 (1985) 326–330.Google Scholar
  28. 27.
    K.O. Friedrichs and R.F. Dressler: A boundary layer theory for elastic bending of plates, Comm. Pure Appl. Math. 14 (1961) 1–33.Google Scholar
  29. 28.
    K.O. Friedrichs and J.J. Stoker: The nonlinear boundary value problem of the buckled plate, Am. J. Math. 63 (1941) 839–888.Google Scholar
  30. 29.
    A.L. Goldenveizer: The equations of the theory of thin shells, Prik. Mat. Mek. (PMM) 4 (1940) 32–42.Google Scholar
  31. 30.
    A.L. Goldenveizer: Equations of the theory of shells in displacement and stress functions, Prik. Mat. Mek. (PMM) 21 (1957) 801–814.Google Scholar
  32. 31.
    A.L. Goldenveizer: Theory of Thin Elastic Shells, Pergamon Press (1961).Google Scholar
  33. 32.
    H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: a note on uniqueness of positive solutions, J. Elasticity 17 (1987) 279–284.Google Scholar
  34. 33.
    H. Grabmüller and E. Novak: Nonlinear boundary value problems for the annular membrane: New results on existence of positive solutions, Math. Meth. Appl. Sci. 10 (1988) 37–49.Google Scholar
  35. 34.
    H. Grabmüller and R. Pirner: Positive solutions of annular elastic membrane problems with finite rotations, Studies in Appl. Math. 77 (1987) 223–252.Google Scholar
  36. 35.
    H. Grabmüller and R. Pirner: Existence theorems for some boundary value problems in the nonlinear theory of annular elastic membranes, Report 128, Oct. 1987, Inst. Angew. Math., Univ. Erlangen (to appear, 1988).Google Scholar
  37. 36.
    H. Grabmüller and H.J. Weinitschke: Finite displacements of annular elastic membranes, J. Elasticity 16 (1986) 135–147.Google Scholar
  38. 37.
    M. Gräff, R. Scheidl, H. Troger and E. Weinmüller: An investigation of the complete post-buckling behavior of axisymmetric spherical shells, ZAMP 36 (1985) 803–821.Google Scholar
  39. 38.
    R.D. Gregory: A note on multiple asymptotic series, S.I.A.M. J. Math. Anal. 11 (1980) 115–118.Google Scholar
  40. 39.
    R.D. Gregory and F.Y.M. Wan: Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory, J. Elasticity 14 (1984) 27–64.Google Scholar
  41. 40.
    R.D. Gregory and F.Y.M. Wan: On plate theories and Saint-Venant's principle, Int. J. Solids & Structures 21 (1985) 1005–1024.Google Scholar
  42. 41.
    R.D. Gregory and F.Y.M. Wan: Edge effect in the stretching of plates, Local Effects in the Analysis of Structures, ed. P. Ladevèze, Elsevier Science Publishers B.V., Amsterdam (1985) 35–54.Google Scholar
  43. 42.
    R.D. Gregory and F.Y.M. Wan: On the interior solution for linear elastic plates, J. Appl. Mech. (to appear, 1988).Google Scholar
  44. 43.
    R.D. Gregory and F.Y.M. Wan: Edge data for cylindrical shells and the foundations of shell theory, Proc. ASME Symp. on Anal. & Comp. Models for Shells(ed. A.K. Noor), to appear (1989).Google Scholar
  45. 44.
    W. Günther: Analoge Systeme von Schalen-Gleichungen, Ing.-Arch. 30 (1961) 160–186.Google Scholar
  46. 44a.
    A. Havers: Asymptotische Biegetheorie der unbelasteten Kugelschale, Ing. Arch. 6 (1935) 282–312.Google Scholar
  47. 45.
    H. Hencky: Über den Spannungszustand in kreisrunden Platten, Z. Math. Phys. 63 (1915) 311–317.Google Scholar
  48. 46.
    F.B. Hildebrand: Asymptotic integration in shell theory, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 53–66.Google Scholar
  49. 47.
    F.B. Hildebrand, E. Reissner and G.B. Thomas: “Notes on the foundations of the theory of small displacements of orthotropic shells”, NACA Techn. Notes No. 1833 (March, 1949).Google Scholar
  50. 48.
    N.C. Huang: Unsymmetrical buckling of thin spherical shells, J. Appl. Mech. 31 (1964) 447–457.Google Scholar
  51. 49.
    J.W. Hutchinson: Imperfection sensitivity of externally pressurized spherical shells, J. Appl. Mech. 34 (1967) 49–55.Google Scholar
  52. 50.
    M.W. Johnson: A boundary layer theory of unsymmetric deformations of circular cylindrical elastic shells, J. Math. & Phys. 42 (1963) 167–187.Google Scholar
  53. 51.
    M.W. Johnson and E. Reissner: On the foundations of the theory of thin elastic shells, J. Math. & Phys. 37 (1958) 375–392.Google Scholar
  54. 52.
    R. Kao and N. Perrone: Large deflections of axisymmetric circular membranes, Int. J. Solids & Structures 7 (1971) 1601–1612.Google Scholar
  55. 53.
    A. Kaplan: Buckling of spherical shells, Thin Shell Structures (The Sechler Anniversary Volume; Y.C. Fung, ed.), Prentice-Hall, Englewood Cliffs, N.J. (1974) 247–288.Google Scholar
  56. 54.
    H.B. Keller, J.B. Keller and E.L. Reiss: Buckled states of circular plates, Quart. Appl. Math. 20 (1962) 55–65.Google Scholar
  57. 55.
    H.B. Keller and E.L. Reiss: Iterative solutions for the nonlinear bending of circular plates, Comm. Pure Appl. Math. 11 (1958) 272–292.Google Scholar
  58. 56.
    G.R. Kirchhoff: Über das Gleichgewicht und Bewegungen einer elastischen Scheibe, J. Reine u. Angew. Math. 40 (1850) 51–88.Google Scholar
  59. 57.
    G.R. Kirchhoff: Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. Reine u. Angew. Math. 56 (1859) 285–313. (also Vorlesungen über Math. Physik, Mechanik, 2nd. Ed., Leipzig (1877)).Google Scholar
  60. 58.
    W.T. Koiter: Over de stabiliteit van het elastisch evenwicht (On the stability of elastic equilibrium), Thesis, Delft (1945). (English translation as NASA TTF-10 (1967)).Google Scholar
  61. 59.
    W.T. Koiter: A consistent first approximation in the general theory of thin elastic shells, Theory of Thin Elastic Shells (Proc. 1st IUTAM Symp. on Shells, Delft (1959); W.T. Koiter, ed.), North Holland (1960) 12–33.Google Scholar
  62. 60.
    W.T. Koiter: Elastic stability and post-buckling behavior, Proc. Symp. Nonlinear Problems, Madison University of Wisconsin Press (1963) 257–275.Google Scholar
  63. 61.
    W.T. Koiter: A spherical shell under point loads at its poles, Progress in Applied Mechanics (The Prager A Anniversary Volume; D. Drucker, ed.), The Macmillan Co. (1963) 155–169.Google Scholar
  64. 62.
    W.T. Koiter: On the nonlinear theory of thin elastic shells, Proc. Kon. Nederl. Akad. Wetensch. B69 (1966) 1–54.Google Scholar
  65. 63.
    W.T. Koiter: The nonlinear buckling problem of a complete spherical shell under external pressure, Proc. Kon. Nederl. Akad. Wetensch. B72 (1969) 40–123.Google Scholar
  66. 64.
    W.T. Koiter: The intrinsic equations of shell theory with some application, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat Nasser, ed.), Pergamon Press (1980) 139–154.Google Scholar
  67. 65.
    W.T. Koiter and J.G. Simmonds: Foundations of shell theory, Proc. 13th Int. Cong. Theor. Appl. Mech., Moscow (1972), (E. Becker and G.K. Mikhailov, (eds.)), Springer-Verlag (1973) 150–176.Google Scholar
  68. 66.
    G.A. Kriegsmann and C.G. Lange: On large axisymmetrical deflection states of spherical shells, J. Elasticity 10 (1980) 179–192.Google Scholar
  69. 67.
    C.G. Lange and G.A. Kriegsmann: The axisymmetric branching behavior of complete spherical shells, Quart. Appl. Math. 39 (1981) 145–178.Google Scholar
  70. 68.
    M.L. Lecornu: Sur l'équilibre des surfaces flexibles et inextensibles, J. de l'Ecole Polytech. 29 (1880) 1–109.Google Scholar
  71. 69.
    R.W. Leonard: Nonlinear first approximation thin shell and membrane theory, NASA Tech. Report, NASA-Langley (1961).Google Scholar
  72. 70.
    A. Libai and J.G. Simmonds: Nonlinear elastic shell theory, Advances in Applied Mechanics 23, Academic Press (1983) 271–371.Google Scholar
  73. 71.
    A. Libai and J.G. Simmonds: The Nonlinear Theory of Elastic Shells: One Spatial Dimension, Academic Press Inc., Boston (1988).Google Scholar
  74. 72.
    Y.H. Lin and F.Y.M. Wan: Asymptotic solutions of steadily spinning shallow shells of revolution under uniform pressure, Int. J. Solids & Structures 21 (1985) 27–53.Google Scholar
  75. 73.
    Y.H. Lin and F.Y.M. Wan: Orthotropic semi-infinite cantilevered strips and the foundations of plate theories, Appl. Math. Tech. Rep. 87–96, Univ. of Washington, Seattle (July 1987; revised April, 1988).Google Scholar
  76. 74.
    Y.H. Lin and F.Y.M. Wan: Some canonical problems for orthotropic cylinders and the foundations of plate theories, Appl. Math. Tech. Rep. 88–5, University of Washington, Seattle (July, 1988).Google Scholar
  77. 75.
    A.E.H. Love: On the small free vibrations and deformation of thin elastic shells, Phil. Trans. Roy. Soc. A179 (1888) 491–546.Google Scholar
  78. 76.
    A.E.H. Love: A Treatise on the Mathematical Theory of Elasticity, 4th Ed., Dover (1944) (1st Ed., 1893).Google Scholar
  79. 77.
    A.I. Lurje: General theory of thin elastic shells, Prik. Mat. Mek. (PMM) 4 (1940) 7–34.Google Scholar
  80. 78.
    R.L. Mallet and F.Y.M. Wan: The static-geometric duality and a staggered mesh difference scheme for some shell problems, Studies in Appl. Math. 52 (1973) 21–38.Google Scholar
  81. 79.
    K. Marguerre: Zur Theorie der gekrümmten Platte grosser Formänderung, Proc. 5th Intern. Congr. Appl. Mech. (1938) 93–101.Google Scholar
  82. 80.
    E. Meissner: Das Elastizitätsproblem für dünne Schalen von Ringflächen-, Kugel- und Kegelform, Phys. Z. 14 (1913) 343–349.Google Scholar
  83. 81.
    P.M. Naghdi: The effect of transverse shear deformation on the bending of elastic shells of revolution, Quart. Appl. Math. 15 (1957) 41–52.Google Scholar
  84. 82.
    P.M. Naghdi: Foundations of elastic shell theory, Progr. in Solid Mech., Vol. IV (I. Sneddon and R. Hill, ed.), North-Holland (1963) 1–90.Google Scholar
  85. 83.
    P.M. Naghdi and R.P. Nordgren: On the nonlinear theory of elastic shells under the Kirchhoff hypothesis, Quart. Appl. Math. 21 (1963) 49–59.Google Scholar
  86. 84.
    E. Novak: On convergence of interpolated iterations: An application to nonlinear plate bending, SIAM J. Math. Anal. (in print, 1988).Google Scholar
  87. 85.
    D.F. Parker and F.Y.M. Wan: Finite polar dimpling of shallow caps under sub-buckling axisymmetric pressure distribution, SIAM J. Appl. Math. 44 (1984) 301–326.Google Scholar
  88. 86.
    Lord Rayleigh (J.W. Strutt): On the infinitesimal bending of surfaces of revolution, London Math. Soc. Proc. 13 (1881) 4–16.Google Scholar
  89. 87.
    E.L. Reiss: A uniqueness theorem for the nonlinear axisymmetric bending of circular plates, AIAA Journal 1 (1963) 2650–2652.Google Scholar
  90. 88.
    E. Reissner: On the theory of thin elastic shells, Contributions to Appl. Mech. (H. Reissner Anniversary Volume), J.W. Edwards, Ann Arbor, MI (1949) 231–247.Google Scholar
  91. 89.
    E. Reissner: On axisymmetrical deformations of thin shells of revolution, Proc. Symp. Appl. Math., Vol. III, McGraw-Hill (1950) 27–52.Google Scholar
  92. 90.
    E. Reissner: The edge effect in symmetric bending of shallow shells of revolution, Comm. Pure Appl. Math. 12 (1959) 385–398.Google Scholar
  93. 91.
    E. Reissner: On torsion of thin cylindrical shells, J. Mech. Phys. Solids 7 (1959) 157–162.Google Scholar
  94. 92.
    E. Reissner: Variational considerations for elastic beams and shells, Proc. ASCE (EM) 8 (1962) 23–57.Google Scholar
  95. 93.
    E. Reissner: On the equations for finite symmetrical deflections of thin shells of revolution, Progress in Mechanics (Prager Anniversary Volume; D.C. Drucker, (ed.)), Macmillan, New York (1963) 171–178.Google Scholar
  96. 94.
    E. Reissner: On the foundations of generalized linear shell theory, Proc. 2nd IUTAM Symp. on Thin Shells (1967), F. Niordson, ed., Springer-Verlag (1969) 15–30.Google Scholar
  97. 95.
    E. Reissner: On finite symmetrical deflections of thin shells of revolution, J. Appl. Mech. 36 (1969) 267–270.Google Scholar
  98. 96.
    E. Reissner: On the derivation of two-dimensional shell equations from three-dimensional elasticity theory, Studies in Appl. Math. 49 (1970) 205–224.Google Scholar
  99. 97.
    E. Reissner: On consistent first approximations in the general linear theory of thin elastic shells, Ing.-Arch. 40 (1971) 402–419.Google Scholar
  100. 98.
    E. Reissner: Linear and nonlinear theories of thin elastic shells, Thin Shell Structures (The E. Sechler Volume; Y.C. Fung, ed.), Prentice Hall (1974) 29–44.Google Scholar
  101. 99.
    E. Reissner: On finite axisymmetrical deformations of thin elastic shells of revolution, Comput. Mechanics (to appear).Google Scholar
  102. 100.
    E. Reissner and F.Y.M. Wan: Rotating shallow elastic shells of revolution, J. Soc. Ind. Appl. Math. 13 (1965) 333–352.Google Scholar
  103. 101.
    E. Reissner and F.Y.M. Wan: A note on the stress strain relations of the linear theory of shells, ZAMP 17 (1966) 676–681.Google Scholar
  104. 102.
    E. Reissner and F.Y.M. Wan: On stress strain relations and strain displacement relations of the linear theory of shells, Recent Progress in Applied Mechanics (The Folke Odqvist Volume), Almqvist & Wiksell (Stockholm), (1967) 487–500.Google Scholar
  105. 103.
    E. Reissner and F.Y.M. Wan: Rotationally symmetric stress and strain in shells of revolution, Studies in Appl. Math. 48 (1969) 1–17.Google Scholar
  106. 104.
    H. Reissner: Spannungen in Kugelschalen (Kuppeln), Muller-Breslau Festschrift (dy1912) 181–193.Google Scholar
  107. 105.
    P. Rentrop: Eine Taylorreihen-Methode zur Lösung von Zwei-Punkt Randwertproblemen mit Anwendung auf singuläre Probleme der nichtlinearen Schalentheorie, TUM, Inst. f. Mathematik, München (1977).Google Scholar
  108. 106.
    J.L. Sanders, Jr.: Nonlinear theories for thin shells, Quart. Appl. Math. 21 (1963) 21–36.Google Scholar
  109. 107.
    H. Schaefer: Die Analogie zwischen den Verschiebungen und den Spannungsfunktionen in der Biegetheorie der Kreiszylinderschale, Ing.-Arch. 29 (1960) 125–133.Google Scholar
  110. 108.
    E. Schwerin: Uber Spannungen und Formänderungen kreisringförmiger Membranen, Z. tech. Phys. 12 (1929) 651–659.Google Scholar
  111. 108a.
    E. Schwerin: Über Spannungen in symmetrisch und unsymmetrisch belasteten Kugelschalen (Kuppeln) insbesondere bei Belastung durch Winddruck, Armierter Beton 12 (1919) 25–37, 54–63.Google Scholar
  112. 109.
    W.J. Seaman and F.Y.M. Wan: Lateral bending and twisting of toroidal shells, Studies in Appl. Math. 53 (1974) 73–89.Google Scholar
  113. 110.
    J.G. Simmonds: A set of simple, accurate equations for circular cylindrical elastic shells, Int. J. Solids & Structures 2 (1966) 525–541.Google Scholar
  114. 111.
    J.G. Simmonds: Green's function for closed elastic spherical shells; Exact and accurate approximate solutions, Proc. Kon. Nederl. Akad. Wetensch. B71 (1968) 236–249.Google Scholar
  115. 112.
    J.G. Simmonds: Rigorous expunction of Poisson's ratio from the Reissner-Meissner equations, Int. J. Solids & Structures 11 (1975) 1051–1056.Google Scholar
  116. 113.
    J.G. Simmonds and D.A. Danielson: Nonlinear shell theory with a finite rotation vector, Proc. Kon. Nederl. Akad. Wetensch. 73 (1970) 460–478.Google Scholar
  117. 114.
    J.G. Simmonds and D.A. Danielson: Nonlinearshell theory with finite rotation and stress-function vectors, J. Appl. Mech. 39 (1972) 1084–1090.Google Scholar
  118. 115.
    J.G. Simmonds and A. Libai: Asymptotic forms of a simplified version of the nonlinear Reissner equations for clamped elastic spherical caps under outward pressure, Comput. Mechanics 2 (1987) 231–224.Google Scholar
  119. 116.
    R.M. Simons: A power series solution of the nonlinear equations for axisymmetrical bending of shallow spherical shells, J. Math. & Phys. 35 (1956) 164–176.Google Scholar
  120. 117.
    H.S. Tsien: A theory for the buckling of thin shells, J. Aero. Sci. 9 (1942) 373–384.Google Scholar
  121. 118.
    A. van der Neut: De elastische stabiliteit van de dunwandigen bol, Thesis, Delft (1932).Google Scholar
  122. 119.
    Th. von Kármán: Festigkeitsprobleme im Maschinenbau, Encyklopädie der Mathematischen Wissenschaften, Vol. 4/4 (1910) 311–385.Google Scholar
  123. 120.
    Th. von Kármán and H.S. Tsien: The buckling of spherical shells by external pressure, J. Aero. Sci. 7 (1939) 43–50.Google Scholar
  124. 121.
    Th. von Kármán and H.S. Tsien: The buckling of thin cylindrical shells under axial compression, J. Aero. Sci. 8 (1941) 303–312.Google Scholar
  125. 122.
    N. Wagner: Existence theorem for a nonlinear boundary value problem in ordinary differential equations, Contrib. Diff. Eq. 3 (1965) 325–336.Google Scholar
  126. 123.
    F.Y.M. Wan: Two variational theorems for thin shells, J. Math. & Phys. 47 (1968) 429–431.Google Scholar
  127. 124.
    F.Y.M. Wan: On the displacement boundary value problem of shallow spherical shells, Int. J. Solids & Structures 4 (1968) 661–666.Google Scholar
  128. 125.
    F.Y.M. Wan: The side force problem for shallow helicoidal shells, J. Appl. Mech. 36 (1969) 292–295.Google Scholar
  129. 126.
    F.Y.M. Wan: Exact reductions of the equations of linear theory of shells of revolution, Studies in Appl. Math. 48 (1969) 361–375.Google Scholar
  130. 127.
    F.Y.M. Wan: Rotationally symmetric shearing and bending of helicoidal shells, Studies in Appl. Math. 48 (1970) 351–369.Google Scholar
  131. 128.
    F.Y.M. Wan: Circumferentially sinusoidal stress and strain in shells of revolution, Int. J. Solids & Structures 4 (1970) 959–973.Google Scholar
  132. 129.
    F.Y.M. Wan: On the equations of the linear theory of elastic conical shells, Studies in Appl. Math. 49 (1970) 69–83.Google Scholar
  133. 130.
    F.Y.M. Wan: Laterally loaded shells of revolution, Ing.-Arch. 42 (1973) 245–258.Google Scholar
  134. 131.
    F.Y.M. Wan: The dimpling of spherical caps, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 495–508.Google Scholar
  135. 132.
    F.Y.M. Wan: Polar dimpling of complete spherical shells, Theory of Shells (Proc. 3rd IUTAM Shell Symp., Tbilisi (1978); W.T. Koiter and G.K. Mikhailov, ed.), North Holland (1980) 191–207.Google Scholar
  136. 133.
    F.Y.M. Wan: Shallow caps with a localized axisymmetric load distribution, Flexible Shells. (Proc. EUROMECH Colloq. No. 165; E.L. Axelrad and F.A. Emmerling, eds.), Springer-Verlag (1984) 124–145.Google Scholar
  137. 134.
    F.Y.M. Wan: Lecture notes on the linear theory of shells of revolution, Appl. Math. Tech. Report 84-89, University of British Columbia (1984).Google Scholar
  138. 135.
    F.Y.M. Wan and H.J. Weinitschke: Boundary layer solutions for some nonlinear elastic membrane problems, ZAMP 38 (1987) 79–91.Google Scholar
  139. 136.
    S. Way: Bending of circular plates with large deflection, Trans. A.S.M.E. 56 (1934) 627–636.Google Scholar
  140. 137.
    H.J. Weinitschke: On the stability problem for shallow spherical shells, J. Math. & Phys. 38 (1960) 209–231.Google Scholar
  141. 138.
    H.J. Weinitschke: On asymmetric buckling of shallow spherical shells, J. Math. & Phys. 44 (1965) 141–163.Google Scholar
  142. 139.
    H.J. Weinitschke: Zur mathematischen Theorie der endlichen Verbiegung elastischer Platten, Habilitationsschrift, Universität Hamburg (1965).Google Scholar
  143. 140.
    H.J. Weinitschke: Existenz-und Eindeutigkeitssätze für die Gleichungen der kreisförmigen Membran, Meth. u Verf. d. Math. Physik 3 (1970) 117–139.Google Scholar
  144. 141.
    H.J. Weinitschke: On axisymmetric deformations of nonlinear elastic membranes, Mechanics Today 5 (E. Reissner Anniversary Volume; S. Nemat-Nasser, ed.), Pergamon Press (1980) 523–542.Google Scholar
  145. 142.
    H.J. Weinitschke: On the calculation of limit and bifurcation points of stability problems in elastic shells, Int. J. Solids & Structures 21 (1985) 79–95.Google Scholar
  146. 143.
    H.J. Weinitschke: On finite displacements of circular elastic membranes, Math. Meth. Appl. Sci. 9 (1987) 76–98.Google Scholar
  147. 144.
    H.J. Weinitschke: On uniqueness of axisymmetric deformations of elastic plates and shells, SIAM J. Math. Anal. 18 (1988) 680–692.Google Scholar
  148. 145.
    H.J. Weinitschke: Stable and unstable membrane solutions for shells of revolutions, to appear in Proc. Pan Amer. Congr. Appl. Mech. (PACAM, Rio de Janeiro (1989); A Leissa, ed.).Google Scholar
  149. 146.
    H.J. Weinitschke and C.G. Lange: Asymptotic solutions for finite deformation of thin shells of revolution with a small circular hole, Quart. Appl. Math. 45 (1987) 401–417.Google Scholar
  150. 147.
    E. Weinmüller: On the boundary value problem for systems of ordinary second order differential equations with a singularity of the first kind, SIAM J. Math. Anal. 15 (1984) 287–307.Google Scholar
  151. 148.
    J.H. Wolkowisky: Existence of buckled states of circular plates, Comm. Pure Appl. Math. 20 (1967) 549–560.Google Scholar
  152. 149.
    M. Yanowitch: Nonlinear buckling of circular clamped plates, Comm. Pure Appl. Math. 9 (1956) 661–672.Google Scholar
  153. 150.
    R. Zoelly: Über ein Knickproblem an der Kugelschale, Thesis, Zürich (1915).Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • F. Y. M. Wan
    • 1
  • H. J. Weinitschke
    • 2
  1. 1.College of Arts and Sciences, GN-15University of WashingtonSeattleU.S.A.
  2. 2.Institut für Angewandte MathematikUniversität Erlangen-NürnbergErlangenFederal Republic of Germany

Personalised recommendations