Journal of Atmospheric Chemistry

, Volume 13, Issue 3, pp 211–224 | Cite as

Application of physical adsorption thermodynamics to heterogeneous chemistry on polar stratospheric clouds

  • Scott Elliott
  • Richard P. Turco
  • Owen B. Toon
  • Patrick Hamill


Laboratory isotherms for the binding of several nonheterogeneously active atmospheric gases and for HCl to water ice are translated into adsorptive equilibrium constants and surface enthalpies. Extrapolation to polar conditions through the Clausius Clapeyron relation yields coverage estimates below the percent level for N2, Ar, CO2, and CO, suggesting that the crystal faces of type II stratospheric cloud particles may be regarded as clean with respect to these species. For HCl, and perhaps HF and HNO3, estimates rise to several percent, and the adsorbed layer may offer acid or proton sources alternate to the bulk solid for heterogeneous reactions with stratospheric nitrates. Measurements are lacking for many key atmospheric molecules on water ice, and almost entirely for nitric acid trihydrate as substrate. Adsorptive equilibria enter into gas to particle mass flux descriptions, and the binding energy determines rates for desorption of, and encounter between, potential surface reactants.

Key words

Isotherm adsorptive equilibrium isostere differential and integral enthalpy Clausius Clapeyron relation stratospheric acids surface coverage desorption rates surface encounter 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adamson, A. W., 1976, Physical Chemistr of Surfaces, Wiley, New York.Google Scholar
  2. Adamson, A. W. and Dormant, L., 1966, Adsorption of nitrogen on ice at 78° K, J. Am. Chem. Soc. 88 (9), 2055–2057.Google Scholar
  3. Adamson, A. W., Dormant, L., and Orem, M. W., 1967, Physical adsorption of vapors on ice I. nitrogen, J. Coll. Int. Sci. 25, 206–217.Google Scholar
  4. Adamson, A. W. and Jones, B. R., 1971, Physical adsorption of vapors on ice IV. carbon dioxide, J. Coll. Int. Sci. 37, 831–835.Google Scholar
  5. Andrews, J. W., 1925, The heat of sublimation of carbon dioxide, J. Am. Chem. Soc. 47, 1597–1602.Google Scholar
  6. Baetzold, R. C. and Somorjai, G. A., 1976, Preexponential factors in surface reactions, J. Catalysis 45, 94–105.Google Scholar
  7. Burton, W. K., Cabrera, N., and Frank, F. C., 1951, The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. 243, 299–358.Google Scholar
  8. Doll, J. D. and Freeman, D. L., 1983, A monte carlo molecular dynamics study of the diffusional recombination kinetics of C+O → CO on Pt(111), Surface Sci. 134, 769–776.Google Scholar
  9. Dormant, L. and Adamson, A. W., 1968, Physical adsorption behavior of molecular solids, J. Coll. Int. Sci. 28, 459–465.Google Scholar
  10. Eley, D. D. and Rideal, E. K., 1941, The catalysis of parahydrogen conversion by tungsgen, Proc. Roy. Soc. London A 178, 429–437.Google Scholar
  11. Elliott, S., Turco, R. P., Toon, O. B., and Hamill, P., 1990, Incorporation of stratospheric acids into water ice, Geophys. Res. Lett. 17 (4), 425–428.Google Scholar
  12. Fletcher, N. H., 1970, The Chemical Physics of Ice, The University Press, Cambridge.Google Scholar
  13. Freeman, D. L. and Doll, J. D., 1983, The influence of diffusion on surface reaction kinetics, J. Chem. Phys. 78 (10), 6002–6009.Google Scholar
  14. Giaque, W. F. and Wiebe, R., 1928, The entropy of hydrogen chloride, heat capacity from 16 K to boiling point, heat of vaporization, vapor pressures of solid and liquid, J. Am. Chem. Soc. 50, 101–122.Google Scholar
  15. Gosele, U. and Huntley, F. A., 1975, Two-dimensional bimolecular diffusion limited reaction kinetics, Physics Lett. 55A (5), 291–292.Google Scholar
  16. Gross, G. W., Wu, C. H., Bryant, L., and McKee, C., 1975, Concentration dependent solute redistribution at the ice/water phase boundary. II. Experimental investigation, J. Chem. Phys. 62 (8), 3085–3092.Google Scholar
  17. Hamill, P., Turco, R. P., and Toon, O. B., 1988, On the growth of nitric and sulfuric acid acrosol particles under stratospheric conditions, J. Atmos. Chem. 7, 287–315.Google Scholar
  18. Hanson, D. and Mauersberger, K., 1988a, Laboratory studies of nitric acid trihydrate: implications for the south polar stratosphere, Geophys. Res. Lett. 15, 855–858.Google Scholar
  19. Hanson, D. and Mauersberger, K., 1988b, Solubility and equilibrium vapor pressures of HCl dissolved in polar stratospheric cloud materials: ice and the trihydrate of nitric acid, Geophys. Res. Lett. 15, 1507–1510.Google Scholar
  20. Hanson, D. and Mauersberger, K., 1990, HCl/H2O solid phase vapor pressures and HCl solubility in ice, J. Phys. Chem. 94, 4700–4705.Google Scholar
  21. Hickmott, T. W. and Ehrlich, G. 1958, Structure sensitive chemisorption: The mechanism of desorption from tungsten, J. Phys. Chem. Solids 5, 47–77.Google Scholar
  22. Hobbs, P. V., 1974, Ice Physics, Clarendon, Oxford.Google Scholar
  23. Jarry, R. L. and Davis, W., 1953, The vapor pressure, association and heat of vaporization of hydrogen fluoride, J. Phys. Chem. 57, 600–610.Google Scholar
  24. Jellinek, H. H. G. and Ibrahim, S. H. 1967, Sintering of powdered ice, J. Coll. Int. Sci. 25, 245–254.Google Scholar
  25. Joyner, L. G. and Emmett, P. H., 1948a, Differential heats of adsorption of nitrogen on carbon blacks, J. Am. Chem. Soc. 70, 2353–2359.Google Scholar
  26. Joyner, L. G. and Emmett, P. H., 1948b, Differential heats of adsorption and desorption of nitrogen on porous glass, J. Am. Chem. Soc. 70, 2359–2361.Google Scholar
  27. Kiefer, J. and Hale, B. N., 1977, The water monomer on the basal plane of ice Ih: and effective pair, central force potential model of the static interaction, J. Chem. Phys. 67 (7), 3206–3213.Google Scholar
  28. Laidler, B. J., 1987, Chemical Kinetics, Harper and Row, London.Google Scholar
  29. Mason, B. J., Bryant, G. W., and Van den Heuvel, A. P., 1963, The growth habits and surface structure of ice crystals, Phil. Mag. 8, 505–526.Google Scholar
  30. Molina, M. J., Tso, T. L., Molina, L. T., and Wang, F. C. Y., 1987, Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride and ice: release of active chlorine, Science, 238, 1253–1257.Google Scholar
  31. Murphy, E. J., 1953, Surface migration of water molecules in ice, J. Chem. Phys. 21 (10), 1831–1835.Google Scholar
  32. Nair, N. K. and Adamson, A. W., 1970, Physical adsorption of vapors on ice III. argon, nitrogen and carbon monoxide, J. Phys. Chem. 74 (10), 2229–2230.Google Scholar
  33. Ocampo, J. and Klinger, J. 1982, Adsorption of N2 and CO2 on ice, J. Coll. Int. Sci. 86, 377–383.Google Scholar
  34. Orem, M. W. and Adamson, A. W., 1969, Physical adsorption of vapor on ice II. n-alkanes, J. Coll. Int. Sci. 31, 278–286.Google Scholar
  35. Quinlan, M. A., Reihs, C. M., Golden, D. M., and Tolbert, M. A., 1990, Heterogeneous reactions on model polar stratospheric cloud surfaces: reaction of N2O5 on ice and nitric acid trihydrate, J. Phys. Chem. 94, 3255–3260.Google Scholar
  36. Rideal, E. K., 1968, Concepts in Catalysis, Academic Press, London.Google Scholar
  37. Rossini, F. D., Wagman, D., Evans, W. H., Levine, S., and Jaffe, I., 1952, Nat. Bur. Stand. U.S. Circ. 500.Google Scholar
  38. Smart, R. S. C. and Sheppard, N., 1969, Adsorption of hydrogen halides on alkali halide surfaces as studied by intrared spectroscopy, Chem. Comm. 468–469.Google Scholar
  39. Smart, R. S. C. and Sheppard, N., 1971, Infrared spectroscopic studies of adsorption on alkali halide surfaces I. HCl, HBr and HI on fluorides, chlorides, bromides and iodides, Proc. Roy. Soc. London A 320, 417–436.Google Scholar
  40. Somorjai, G. A., 1972, Principles of Surface Chemistry, Prentice Hall, Englewood Cliffs, New Jersey.Google Scholar
  41. Toon, O. B., Hamill, P., Turco, R. P., and Pinto, J., 1986, Condensation of HCl and HNO3 in the winter polar stratosphere, Geophys. Res. Lett. 13, 1284–1287.Google Scholar
  42. Toon, O. B., Turco, R. P., Jordan, J., Goodman, J., and Ferry, G., 1989, Physical processes in polar stratospheric ice clouds, J. Geophys. Res. 94, 11359–11380.Google Scholar
  43. Turco, R. P., Toon, O. B., and Hamill, P., 1989, Heterogeneous physicochemistry of the polar ozone hole, J. Geophys. Res. 94, 16493–16510.Google Scholar
  44. Wofsy, S. C., Molina, M. J., Salawitch, R. J., Fox, L. E., and McElroy, M. B., 1988, Interactions between HCl, NOx and H2O ice in the antarctic stratosphere: implications for ozone, J. Geophys. Res. 93, 2442–2450.Google Scholar
  45. Wolff, E. W., Mulvaney, R., and Oates, K., 1989, Diffusion and location of hydrochloride acid in ice: implications for polar stratospheric clouds and ozone depletion, Geophys. Res. Lett. 16 (6), 487–490.Google Scholar

Copyright information

© Kluwer Academic Publishers 1991

Authors and Affiliations

  • Scott Elliott
    • 1
  • Richard P. Turco
    • 1
  • Owen B. Toon
    • 2
  • Patrick Hamill
    • 3
  1. 1.Department of Atmospheric SciencesUniversity of CaliforniaLos AngelesU.S.A.
  2. 2.NASA Ames Research CenterMoffett FieldU.S.A.
  3. 3.Physics DepartmentSan Jose State UniversitySan JoseU.S.A.

Personalised recommendations