Skip to main content
Log in

Parental age dependent changes as a source of genetic variation in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

It has been shown repeatedly that numerous cumulative changes occur in chromosomes of D. melanogaster, as an effect of ageing which, especially in the homozygous state, significantly affect different fitness components of their carriers. It appears that the observed age-affected events are produced by systematic and ontogenetically programmed changes in genetic loads at specific chromosomes, which are transferable to following generations. It has been suggested that such changes could be of mutational origin, and that they cold be more frequent at gene loci which are epigenetically active during ontogenesis.

It was demonstrated that a large sample of identical chromosomes behave quite differently in the homozygous state when obtained from aged compared to non-aged parents, producing a significant decrease in relative viability, length of preadult development, and longevity of their carriers, as well as in the frequency of recombinations of corresponding chromosomes. A specfic treatment by streptomycin resulted in remarkably milder effects of ageing, which is in accordance with the statement of some authors that such a treatment may diminish the frequency of spontaneous recessive mutations in their carriers. Thus the observed age-affected changes could be an important source of developmental and evolutionary variation of living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andjelković, M., Marinković, D., Tucić, N. & Tošić, M., 1979. Age-affected changes in viability and longevity genetic loads of Drosophila melanogaster. Am. Naturalist 114: 915–920.

    Google Scholar 

  • Bajraktari, I., 1978. Genetic changes during the ageing processes in Drosophila melanogaster. Acta biol. Iugosl. Genetika 10: 139–150.

    Google Scholar 

  • Bajraktari, I., 1981. The influence of ageing on genetic changes in Drosophila melanogaster. Ph.D. Thesis, University of Belgrade.

  • Baker, B. S., Boyd, J. B., Carpenter, T. C., Green, M. M., Nguyen, T. D., Ripoll, P. & Smith, P. B., 1976. Genetic controls of meiotic recombination and somatic DNA metabolism in Drosophila melanogaster. Proc. natn. Acad. Sci. U.S.A. 73: 4140–4144.

    Google Scholar 

  • Bayliss, F. T. & Ingraham, J. L., 1974. Mutation in Saccharomyces cerevisiae conferring streptomycin and cold sensitivity by affecting ribisome formation and function. J. Bacteriol. 118: 319–328.

    Google Scholar 

  • Beardmore, J. A., Lints, F. A. & Al, Baldawi, L. F., 1975. Parental age and heritability of sternopleural chaeta number in Drosophila melanogaster. Heredity 34: 71–82.

    Google Scholar 

  • Beardmore, J. A. & Shami, S. A., 1976. Parental age, genetic variation and selection. In: S., Karlin & E., Nevo (eds), Population genetics and ecology. Academic Press, New York.

    Google Scholar 

  • Beardmore, J. A. & Shami, S. A., 1985. The Lansing effect and age-mediated changes in genetic parameters. Genetica 68: 37–46.

    Google Scholar 

  • Belicina, N. V. & Šapiro, N. I., 1960. New data on the influence of streptomycin on the effectiveness of radiation of mammals' cells. D. A. N. USSR 135/2: 463.

    Google Scholar 

  • Boyd, J. B., Golino, M. D. & Setlow, R. B., 1976. The mei-9a mutant of Drosophila melanogaster increases mutagen sensitivity and decreases excision repair. Genetics 84: 527–544.

    Google Scholar 

  • Brock, R. D., 1971. Differential mutation of the β-galactosidase gene of Escherichia coli. Mut. Research 11: 181.

    Google Scholar 

  • Comfort, A., 1964. Ageing: The biology of senescence. Holt, Rinehart and Winston Inc., New York.

    Google Scholar 

  • Curtis, H. J., 1966. Biological mechanisms of ageing. C. C. Thomas, Springfield.

  • Delcuve, G., Cabezon, D., Ghersen, A., Herzog, A. & Bollen, A., 1977. Amber mutations in E. coli essential genes: Isolation of mutants affected in the ribosomes. Mol. gen. Genetics 157: 149–154.

    Google Scholar 

  • Dobzhansky, T., Holz, A. M. & Spassky, B., 1942. Genetics of natural populations. VIII. Concealed variability in the second and the fourth chromosomes of Drosophila pseudoobscura and its bearing on the problem of heterozis. Genetics 27: 463–490.

    Google Scholar 

  • Dubinin, N. P., 1966. Evolution of populations and radiation. Atomizda Moscow.

  • Dubinin, N. P., Dubinina, L. G. & Tarasov, B. A., 1965. On the mechanism of chemical protection from ionizing radiation of human chromosomes in the tissue culture. Genetika 5: 68.

    Google Scholar 

  • Dubinin, N. P. & Grozdova, T. J., 1963. Streptomycin, radiation, and natural mutability. D. A. N. USSR 148/6: 1397.

    Google Scholar 

  • Herman, R. K. & Dworkin, N. B., 1971. Effect of gene induction on the rate of mutagenesis by ICR-191 in E. coli. J. Bacteriol. 106: 543–550.

    Google Scholar 

  • Ives, P. T., 1945. The genetic structure of American populations of Drosophila melanogaster. Genetics 30: 167–196.

    Google Scholar 

  • Kimball, R. F., Gaither, M. & Wilson, S., 1956. Post-treatment modification of X-ray mutagenesis in Paramecium. Rad. Research 5: 485.

    Google Scholar 

  • Kirkwood, T. B. L., 1977. Evolution of ageing. Nature 270: 301.

    Google Scholar 

  • Kirkwood, T. B. L. & Holliday, R., 1979. The evolution of ageing and longevity. Proc. Roy. Soc. London, B, 205: 531.

    Google Scholar 

  • Kohne, T. & Roth, J. R., 1974. Proflavin mutagenesis of bacteria. J. mol. Biol. 89: 17–32.

    Google Scholar 

  • Lamb, M., 1978. Ageing. In: M., Ashburner and T. R. F., Wright, eds, The Genetics and Biology of Drosophila, vol. 2c. Academic Press, New York.

    Google Scholar 

  • Lints, F. A., 1978. Genetics and ageing. Karger, Basel.

    Google Scholar 

  • Marinković, D. & Tucić, N., 1982. Contribution to the evolutionary theory of ageing. IV. Age-associated changes and developmental programmes in Drosophila. In: S., Lakovaara (ed.) Advances in genetics, development and evolution of Drosophila. Plenum Press, New York: 197–210.

    Google Scholar 

  • Marinković, D., Tucić, N. & Andjelković, M., 1975. The effect of streptomycin on genetic loads produced in the course of ageing Drosophila melanogaster. Acta Biol. JAZU VII/3–8: 339–348.

    Google Scholar 

  • Marinković, D., Tucić, N. & Kekić, V., 1980. Genetic variation and ecological adaptations. In: N. N., Vorontsov & J. M.van, Brink (eds), Animal Genetics and Evolution. Dr. W. Junk B.V. Publishers, The Hague: 249–262.

    Google Scholar 

  • Marinković, D., Tucić, N., Kekić, V. & Andjelković, M., 1973. Age-associated changes in viability genetic loads of Drosophila melanogaster. Expl Geront. 8: 199–206.

    Google Scholar 

  • Mayer, P. J. & Baker, G. T., 1985. Genetic aspects of Drosophila as a model system of eukaryotic ageing. Intern. Rev. Cytol. 95: 62–102.

    Google Scholar 

  • Medawar, P. B., 1952. An unsolved problem in biology. H. K. Lewis, London.

    Google Scholar 

  • Muller, H. J., 1950. Our load of mutations. Am. J. hum. Genetics 2: 111–176.

    Google Scholar 

  • Nomura, M., 1970. Bacterial ribosome. Bacteriol. Review 34: 228–277.

    Google Scholar 

  • Orgel, L. E., 1963. The maintenance of the accuracy of protein synthesis and its relevance to ageing. Proc. natn. Acad. Sci. U.S.A. 49: 517–5??.

    Google Scholar 

  • Ozaki, M., Mizushima, S. & Nomura, M., 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333–339.

    Google Scholar 

  • Sacher, G. A. & Hart, R. W., 1978. Longevity, ageing and comparative cellular and molecular biology of the house mouse, Mus musculus, and the white-footed mouse Peromyscus leucopus. In: D., Bergams & D. E., Harrison (eds) Genetic effect on Ageing. Alan R. Liss, New York.

    Google Scholar 

  • Savić, D. & Kanazir, D., 1975. UV induced reversion patterns of constitutive and repressed Salmonella hystidine auxotrophs. Mol. gen. Genetics 137: 143–150.

    Google Scholar 

  • Sinex, M. F., 1974. The mutation theory of ageing. In: M., Rockstein (ed.), Theoretical aspects of ageing. Academic Press, London.

    Google Scholar 

  • Šmit, Ž., Rizova, M., Janković, D., Mihajlović, N., Jovanović, V. & Tucić, N., 1981. Contribution to the evolutionary theory of ageing. III. Relationship between duration of preimaginal development and longevity in Drosophila melanogaster. Acta biol. Iugosl. Genetika 13: 157–170.

    Google Scholar 

  • Szillard, L., 1959. On the nature of the ageing process. Proc. natn. Acad. Sci. U.S.A. 45: 30–45.

    Google Scholar 

  • Tucić, N., Andjelković, M., Kekić, V. & Marinković, D., 1980. Contribution to the evolutionary theory of ageing. I. Ageaffected changes in genetic loads of Drosophila melanogaster. Acta biol. Iugosl. Genetika 12: 173–185.

    Google Scholar 

  • Tucić, N. & Marinković, D., 1978. Contribution to the evolutionary theory of ageing. II. The relationship between relative viability and longevity in Drosophila melanogaster. Arch. biol. Sci. 30: 35–43.

    Google Scholar 

  • Williams, G. C., 1957. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marinkovié, D., Bajraktari, I. Parental age dependent changes as a source of genetic variation in Drosophila melanogaster . Genetica 77, 113–121 (1988). https://doi.org/10.1007/BF00057761

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057761

Keywords

Navigation