Skip to main content
Log in

Evolution of genome size and DNA base composition in reptiles

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolution of genome size and base composition of DNA from various reptiles has been studied. DNA amount was measured cytophotometrically and GC concentration estimated by thermal denaturation. The Reptilia appear to be a fairly homogeneous group with respect to DNA quantity, although chelonians stand out because of their higher inter- and intrafamilial variability and DNA content. Quantitative DNA variations do not show a single evolutionary trend, but rather seem to have followed different patterns within each group.

The differences in genome size between related species seem to be mainly the result of duplication or loss of DNA sequences characterized by a similar mean denaturation temperature. This agrees with observations of other authors that quantitative variations in reptiles are mainly due to differences in the amount of repetitive DNA.

Several hypotheses on the significance of quantitative DNA variations in reptiles are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin N. B., Mattison G., Beçak W. & Ohno S., 1965. The comparative DNA content of 19 species of placental mammals, reptiles and birds. Chromosoma 17: 1–10.

    Google Scholar 

  • Bellaira D. d'A. & Underwood G., 1951. The origin of snakes. Biol. Rev. 26: 193–237.

    Google Scholar 

  • Bennett A. F. & Dawson W. R., 1976. Metabolism. In: Biology of the Reptilia. C. Gans & W. R. Dawson eds. Academic Press, London, New York, San Francisco. Vol. 5, pp. 127–223.

    Google Scholar 

  • Bennett M. D., 1971. The duration of meiosis. Proc. R. Soc. B 178: 277–299.

    Google Scholar 

  • Camp C. L., 1923. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48: 289–435.

    Google Scholar 

  • Carroll R. L., 1969. Origin of reptiles. In: Biology of the Reptilia. C. Gans ed. Academic Press. New York and London, Vol. 1, pp. 1–44.

    Google Scholar 

  • Cavalier-Smith T., 1978. Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J. Cell Sci. 34: 247–278.

    Google Scholar 

  • Clark H. F., Cohen M. M. & Korzon D. T., 1970. Characterization of reptilian cell lines established at incubation temperatures of 23 to 26 degrees. Proc. Soc. exp. Biol. Med. 133: 1039–1047.

    Google Scholar 

  • Commoner B., 1964. Roles of deoxyribonucleic acid in inheritance. Nature 202: 960–968.

    Google Scholar 

  • Cuellar R. E., Ford G. A., Briggs W. R. & Thompson W. F., 1978. Application of higher derivative techniques to analysis of the high resolution thermal denaturation prefiles of reassociated repetitive DNA. Proc. natn. Acad. Sci. USA. 75: 6026–6030.

    Google Scholar 

  • Davidson E. H. & Britton R. J., 1973. Organization, transcription, and regulation in the animal genome. Quart. Rev. Biol. 48: 565–613.

    Google Scholar 

  • De Lucca F. L., Imaizumi M. T. & Haddad A., 1974. Characterization of ribonucleic acids from the venom glands of Crotalus durissus terrificus (Ophidia, Reptilia) after manual extraction of the venom. Biochem. J. 139: 151–156.

    Google Scholar 

  • Epplen J. T., Diedrich U., Wagenmann M., Schmidtke J. & Engel W., 1979. Contrasting DNA sequence organisation patterns in sauropsidian genomes. Chromosoma 75: 199–214.

    Google Scholar 

  • Epplen J. T., Leipold M., Engel W. & Schmidtke J., 1978. DNA sequence organisation in avian genomes. Chromosoma 69: 307–321.

    Google Scholar 

  • Gabarro J., 1978. Numerical analysis of thermal denaturation of nucleic acids. Analyt. Biochem. 91: 309–322.

    Google Scholar 

  • Gorman G. C., 1970. Chromosomes and the systematics of the family Teiidae (Sauria, Reptilia). Copeia, 1970: 230–245.

    Google Scholar 

  • Gorman G. C., 1973. The chromosomes of the Reptilia, a cytotaxonomic interpretation. In: Cytotaxonomy and vertebrate evolution. A. B. Chiarelli & E. Capanna, eds. Academic Press, New York and London, pp. 349–424.

    Google Scholar 

  • Gorman G. C. & Schochat D., 1972. A taxonomic intepretation of chromosomal and electrophoretic data on the agamid lizards of Israel with notes on some east african species. Herpetologica 28: 106–112.

    Google Scholar 

  • Grémy F. & Salmon D., 1969. Bases statistiques pour la recherche médicale et biologique. Dunod, Paris.

    Google Scholar 

  • Grosset L. & Odartchenko N., 1975. Relationships between cell cycle duration, S-period and nuclear DNA content in erythroblasts of four vertebrate species. Cell Tissue Kinet. 8: 81–90.

    Google Scholar 

  • Hatch F. T. & Mazrimas J. A., 1977. Satellite DNA and cytogenetic evolution. In: Molecular Human Cytogenetics. R. S. Sparkes, D. E. Comings & C. F. Fox, eds. Academic Press, New York and London, pp. 395–414.

    Google Scholar 

  • Hinegardner R., 1976. Evolution of genome size. In: Molecular evolution. F. J. Ayala. ed. Sinauer, Sunderland. pp. 179–199.

    Google Scholar 

  • John B. & Miklos G. L., 1979. Functional aspects of satellite DNA and heterochromatin. Int. Rev. Cytol. 58: 1–114.

    Google Scholar 

  • King M., 1978. A new chromosome form of Hemidactylus frenatus (Dumeril and Bibron). Herpetologica 34: 216–218.

    Google Scholar 

  • Lewin B., 1974. Gene expression. Vol. 2 Eukaryotic chromosomes. Wiley, London.

    Google Scholar 

  • Macgregor H. C., 1978. Some trends in the evolution of very large chromosomes. Phil. Trans. R. Soc. B 283: 309–318.

    Google Scholar 

  • Macgregor H. C. & Klosterman L., 1979. Observations on the cytology of Bipes (Amphisbaenia) with special reference to its lampbrush chromosomes. Chromosoma 72: 67–87.

    Google Scholar 

  • Mandel M. & Marmur J., 1968. Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Meth. Enzymol. 12B: 195–206.

    Google Scholar 

  • Marmur J., 1963. A procedure for the isolation of deoxyribonucleic acid from microorganisms. Meth. Enzymol. 6: 726–738.

    Google Scholar 

  • Matthey R., 1931. Chromosomes de Reptiles, Sauriens, Ophidiens, Chéloniens. L'évolution de la formule chromosomiale chez les Sauriens. Rev. suisse Zool. 38: 117–186.

    Google Scholar 

  • Matthey R., 1933. Nouvelle contribution à l'étude des chromosomes chez les Sauriens. Rev. suisse Zool. 40: 281–316.

    Google Scholar 

  • McDowell S. B.jr. & Bogert C. M., 1954. The systematic position of Lanthanotus and the affinities of the anguinomorphan lizards. Bull. Am. Mus. Nat. Hist. 105: 1–142.

    Google Scholar 

  • Mendelsohn M., 1966. Absorption cytophotometry: comparative methodology for heterogeneous objects, and the two wavelength method. In: Introduction to quantitative cytochemistry. G. L. Wied ed. Academic press, New York and London, pp. 210–214.

    Google Scholar 

  • Mirsky A. E. & Ris H., 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. J. gen. Physiol. 34: 451–462.

    Google Scholar 

  • Morescalchi A., 1977. Phylogenetic aspects of karyological evidence. In: Major patterns in vertebrate evolution. M. K. Hecht, P. C. Goody & B. M. Hecht eds. Plenum, New York, pp. 149–167.

    Google Scholar 

  • Ohno S., 1970. Evolution by gene duplication. Springer, Heidelberg.

    Google Scholar 

  • Ohno S., 1972. So much ‘junk’ DNA in our genome. In: Evolution of genetic systems. H. H. Smith ed., Gordon & Breach, New York, London Paris, pp. 366–370.

    Google Scholar 

  • Olmo E., 1976. Genome size in some reptiles. J. exp. Zool. 195: 305–310.

    Google Scholar 

  • Olmo E. & Morescalchi A., 1975. Evolution of the genome and cell sizes in salamanders. Experientia 31: 804–806.

    Google Scholar 

  • Olmo E. & Morescalchi A., 1978. Genome and cell size in frogs: A comparison with salamanders. Experientia 34: 44–46.

    Google Scholar 

  • Olmo E. & Odierna G., 1977. Base composition of DNA from some reptiles. J. exp. Zool. 199: 143–148.

    Google Scholar 

  • Olmo E. & Odierna G., 1980. Chromosomes and DNA in Cordylid lizards. Herpetologica 36: 311–316.

    Google Scholar 

  • Olmo, E. & Odierna, G., 1981. Relationships between DNA content and cell morphometric parameters in reptiles. Basic appl. Histochem. (in press).

  • Ray-Chaudury S. P., Singh L. & Sharma T., 1971. Evolution of sex chromosomes and formation of W-chromatin in snakes. Chromosoma 33: 239–251.

    Google Scholar 

  • Rice N. R., 1972. Change in repeated DNA in evolution. In: Evolution of genetic systems. H. H. Smith ed. Gordon & Breach, New York, London, Paris, pp. 44–79.

    Google Scholar 

  • Saint-Girons M. C., 1970. Morphology of the circulating blood cells. In: Biology of the Reptilia. C. Gans & T. S. Parsons eds. Academic Press, London and New York. vol. 3: pp. 73–91.

    Google Scholar 

  • Singh L., 1974. Study of mitotic and meiotic chromosomes in seven species of lizards. Proc. Zool. Soc. Calcutta 27: 57–79.

    Google Scholar 

  • Soma M., Beçak M. L. & Beçak W., 1975. Estudio comparativo do contenudo de DNA em 12 species de lacertilios. Ciencia e Cultura. 27: 1322–1328.

    Google Scholar 

  • Stebbins G. L., 1976. Chromosome, DNA and plant evolution. Evolut. Biol. 9: 1–34.

    Google Scholar 

  • Straus N. A., 1976. Repeated DNA in Eukaryotes. Handbook of Genetics. R. C. King ed. Plenum Press, New York-London. Vol. 5: Molecular genetics, pp. 3–29.

    Google Scholar 

  • Stock A. D., 1972. Karyological relationships in turtles (Reptilia, Chelonia). Can. J. Genet. Cytol. 14: 859–868.

    Google Scholar 

  • Szarski H., 1976. Cell size and nuclear DNA content in vertebrates. Int. Rev. Cytol. 44: 93–111.

    Google Scholar 

  • Vialli M. & Casonato P., 1971. Quantità di acido desossiribonucleico per nucleo e aree nucleari negli eritrociti di Sphenodon punctatus, rettile rincocefalo. Riv. Istochim. norm. patol. 17: 373–380.

    Google Scholar 

  • White F. N., 1976. Circulation. In: Biology of the Reptilia. C. Gans & W. R. Dawson eds. Academic Press, London, New York, San Francisco, vol. 5: 275–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olmo, E. Evolution of genome size and DNA base composition in reptiles. Genetica 57, 39–50 (1981). https://doi.org/10.1007/BF00057541

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057541

Keywords

Navigation