Skip to main content
Log in

Evolutionary genetics of the Drosophila alcohol dehydrogenase gene-enzyme system

  • Review
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Evolutionary genetics embodies a broad research area that ranges from the DNA level to studies of genetic aspects in populations. In all cases the purpose is to determine the impact of genetic variation on evolutionary change. The broad range of evolutionary genetics requires the involvement of a diverse group of researchers: molecular biologists, (population) geneticists, biochemists, physiologists, ecologists, ethologists and theorists, each of which has its own insights and interests. For example, biochemists are often not concerned with the physiological function of a protein (with respect to pH, substrates, temperature, etc.), while ecologists, in turn, are often not interested in the biochemical-physiological aspects underlying the traits they study. This review deals with several evolutionary aspects of the Drosophila alcohol dehydrogenase gene-enzyme system, and includes my own personal viewpoints. I have tried to condense and integrate the current knowledge in this field as it has developed since the comprehensive review by van Delden (1982). Details on specific issues may be gained from Sofer and Martin (1987), Sullivan, Atkinson and Starmer (1990); Chambers (1988, 1991); Geer, Miller and Heinstra (1991); and Winberg and McKinley-McKee (1992).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AndersonS. M. & J. F.McDonald, 1981. Effect of environmental alcohol on in vivo properties of Drosophila alcohol dehydrogenase. Biochem. Genet. 19: 421–430.

    Google Scholar 

  • AndersonS. M. & J. F.McDonald, 1983. Biochemical and molecular analysis of naturally occurring Adh variants in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 80: 4798–4802.

    Google Scholar 

  • AndersonS. M. & S. E.Barnett, 1991. The involvement of alcohol and aldehyde dehydrogenase in alcohol/aldehyde metabolism in Drosophila melanogaster. Genetica 83: 99–106.

    Google Scholar 

  • AndersonS. M., M. R.Brown & J. F.McDonald, 1991. Tissue specific expression of the Drosophila Adh-gene: a comparison of in situ hybridization and immunocytochemistry. Genetica 84: 95–100.

    Google Scholar 

  • AquadroC. F., S. F.Desse, M. M.Bland, C. H.Langley & C. C.Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.

    Google Scholar 

  • AquadroC. F., 1992. Why is the genome variable? Insights from Drosophila. Trends in Genet. 8: 355–362.

    Google Scholar 

  • AshburnerM., M.Bodmer & F.Lemeunier, 1984. On the evolutionary relationships of Drosophila melanogaster. Devel. Genet. 4: 295–312.

    Google Scholar 

  • Belfort, M., 1991. Self-splicing introns in prokaryotes: Migrant fossils? Cell: 9–11.

  • BennerS. A. & A. DElington, 1988. Interpreting the behavior of enzymes, purpose or pedigree? Crit. Rev. Biochem. 23: 369–426.

    Google Scholar 

  • BenyajatiC., A. R.Place, D. A.Powers & W.Sofer, 1981. Alcohol dehydrogenase gene of Drosophila melanogaster: relationship of intervening sequences to functional domains in the protein. Proc. Natl. Acad. Sci. USA 78: 2717–2721.

    Google Scholar 

  • Bijlsma-MeelisE., 1979. Viability in Drosophila melanogaster in relation to age and ADH activity of eggs transferred to ethanol food. Heredity 42: 79–89.

    Google Scholar 

  • Bijlsma-MeelisE. & R.Bijlsma, 1988. The alcohol dehydrogenase polymorphism in Drosophila melanogaster: fitness measurements and predictions under conditions with no alcohol stress. Genetics 120: 743–753.

    Google Scholar 

  • BodmerM. & M.Ashburner, 1984. Conservation and change in the DNA sequence coding for alcohol dehydrogenase in sibling species of Drosophila. Nature 309: 425–430.

    Google Scholar 

  • BradyJ. P. & R. C.Richmond, 1992. An evolutionary model for duplication and divergence of esterase genes in Drosophila. J. Mol. Evol. 34: 506–521.

    Google Scholar 

  • BriscoeD. A., A.Robertson & J.Malpica, 1975. Dominance at Adh locus in response of adult Drosophila melanogaster to environmental alcohol. Nature 255: 148–149.

    Google Scholar 

  • CacconeA. & J.R.Powell, 1990. Extreme rates and heterogeneity in insect DNA evolution. J. Mol. Evol. 30: 273–280.

    Google Scholar 

  • CavenerD.R. & M.Clegg, 1981a. Evidence for biochemical and physiological differences between enzyme genotypes in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 78: 4444–4447.

    Google Scholar 

  • CavenerD. R. & M.Clegg, 1981b. Multigenic response to ethanol in Drosophila melanogaster. Evolution 35: 1–10.

    Google Scholar 

  • ChambersG. K., 1988. The Drosophila alcohol dehydrogenase gene-enzyme system. Adv. Genet. 25: 40–107.

    Google Scholar 

  • ChambersG. K., 1991. Gene expression, adaptation and evolution in higher organisms. Evidence from studies of Drosophila alcohol dehydrogenases. Comp. Biochem. Physiol. 99B: 723–730.

    Google Scholar 

  • ChenZ., L.Lu, W.Lee & S. H.Chang, 1991. Role of aspartic acid 38 in the cofactor specificity of Drosophila alcohol dehydrogenase. Eur. J. Biochem. 202: 263–267.

    Google Scholar 

  • ChoudharyM. & C. C.Laurie, 1991. Use of in vitro mutagenesis to analyze the molecular basis of the difference in Adh expression associated with the aliozyme polymorphism in Drosophila melanogaster. Genetics 129: 481–488.

    Google Scholar 

  • ClarkA. G. & L. E.Keith, 1988. Variation among extracted lines of Drosophila melanogaster in triacylglycerol and carbohydrate storage. Genetics 119: 595–607.

    Google Scholar 

  • ClarkA. G., 1990. Genetic components of variation in energy storage in Drosophila melanogaster. Evolution 44: 637–650.

    Google Scholar 

  • ClarkA. G., 1991. Mutation-selection balance and metabolic control theory. Genetics 129: 909–923.

    Google Scholar 

  • ClarkeB., 1975. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics 79a: 101–113.

    Google Scholar 

  • CohanF. M. & A. A.Hoffmann, 1986. Genetic divergence under uniform selection. II. Different responses to selection for knockdown resistance to ethanol among Drosophila melanogaster populations and their replicate lines. Genetics 114: 145–163.

    Google Scholar 

  • ColletC., 1988. Recent origin for a thermostable alcohol dehydrogenase allele of Drosophila melanogaster. J. Mol. Evol. 27: 142–146.

    Google Scholar 

  • DavidJ. R. & C.Bocquet, 1976. Compared toxicities of different alcohols for two Drosophila sibling species: D. melanogaster and D. simulans. Comp. Biochem. Physiol. 54C: 71–74.

    Google Scholar 

  • DavidJ. R., C.Bocquet, J.vanHerrewege, P.Fouillet & M.Arens, 1978. Alcohol metabolism in Drosophila melanogaster: Uselessness of the most active aldehyde oxidase produced by the Aldox-locus. Biochem. Genet. 16: 203–211.

    Google Scholar 

  • DavidJ. R. & J.vanHerrewege 1983. Adaptation to alcoholic fermentation in Drosophila species: relationship between alcohol tolerance and larval habitat. Comp. Biochem. Physiol. 74A: 283–288.

    Google Scholar 

  • DavidJ. R., 1988. Ethanol adaptation and alcohol dehydrogenase polymorphism in Drosophila: from phenotypic functions to genetic structures. In: Population Genetics and Evolution (G.deJong, ed.) pp. 163–172. Springer Verlag, Berlin.

    Google Scholar 

  • DayT. H., P. C.Hillier & B.Clarke, 1974. Properties of genetically polymorphic isozymes of alcohol dehydrogenase in Drosophila melanogaster. Biochem. Genet. 11: 141–153.

    Google Scholar 

  • DeJongG. & W.Scharloo, 1976. Environmental determination of selective significance or neutrality of amylase variants in Drosophila melanogaster. Genetics 84: 77–94.

    Google Scholar 

  • Deltombe-LietaertM. C., J.Deleour, N.Lenelle-Montfort & A.Elens, 1979. Ethanol metabolism in Drosophila melanogaster. Experientia 35: 579–581.

    Google Scholar 

  • DickinsonW. J., R. G.Rowan & M. D.Brennan, 1984. Regulatory gene evolution: adaptive differences in expression of alcohol dehydrogenase in Drosophila melanogaster and D. simulans. Heredity 52: 215–225.

    Google Scholar 

  • DuesterG., H.Jörnvall & G. W.Hatfield, 1986. Intron-dependent evolution of the nucleotide-binding domains within alcohol dehydrogenase and related enzymes. Nucleic Acids Res. 14: 1931–1941.

    Google Scholar 

  • DykhuizenD. E., A. M.Dean & D. L.Hartl, 1987. Metabolic flux and fitness. Genetics 115: 25–31.

    Google Scholar 

  • DykhuizenD. E. & A. M.Dean, 1990. Enzyme activity and fitness: evolution in solution. Trends Ecol. Evol. 5: 257–262.

    Google Scholar 

  • EissesK. Th., W. G. E. J.Schoonen, W.Aben, W.Scharloo & G. E. W.Thörig, 1985. Dual function of the alcohol dehydrogenase of Drosophila melanogaster: ethanol and acetaldehyde oxidation by two alleloenzymes ADH-71k and ADH-F. Mol. Gen. Genet. 199: 76–81.

    Google Scholar 

  • EissesK. Th., 1989. On the oxidation of aldehydes by alcohol dehydrogenase of Drosophila melanogaster: evidence for the gem-diol as the reacting substrate. Bioorg. Chem. 17: 268–274.

    Google Scholar 

  • EissesK. Th., A. J.Andriesse, A. D.deBoer, G. E. W.Thörig & P. J.Weisbeek, 1990. Analysis of the gene encoding the multifunctional alcohol dehydrogenase ADH-71k of Drosophila melanogaster. Mol. Biol. Evol. 7: 459–469.

    Google Scholar 

  • EtgesW. J. & C. S.Klassen, 1989. Influences of atmospheric ethanol on adult Drosophila mojavensis: altered metabolic rates and increases in fitness among populations. Physiol. Zool. 62: 170–193.

    Google Scholar 

  • FellD. A., 1992. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286: 313–330.

    Google Scholar 

  • FibiaJ., L.Enjuanes & R.Gonzàlez-Duarte, 1989. Inter-specific analysis of Drosophila alcohol dehydrogenase by an immunoenzymatic assay using monoclonal antibodies. Biochem. Biophys. Res. Commun. 160: 638–646.

    Google Scholar 

  • FibliaJ., S.Atrian & R.Gonzàlez-Duarte, 1993. Evidence of serine-protease activity closely associated with drosophila alcohol dehydrogenase. Eur. J. Biochem. 211: 357–365.

    Google Scholar 

  • FershtA. R., 1985. Enzyme Structure and Mechanism. Second edition, Freeman & Company, New York.

    Google Scholar 

  • FreriksenA., D.Seykens, W.Scharloo & P. W. H.Heinstra, 1991. Alcohol dehydrogenase controls the flux from ethanol into lipids in Drosophila larvae: a 13C NMR study. J. Biol. Chem. 266: 21399–21403.

    Google Scholar 

  • Freriksen, A., D. Seykens & P. W. H. Heinstra, 1993. Differences between larval and adult Drosophila in metabolic degradation of ethanol. Evolution, in press.

  • Freriksen, A., B. L. A. de Ruiter, H-J. Groenenberg, W. Scharloo & P. W. H. Heinstra, 1993a. Multilevel approach to the significance of genetic variation in alcohol dehydrogenase of Drosophila. Evolution, in press.

  • Freriksen, A., B. L. A. de Ruiter, W. Scharloo & P. W. H. Heinstra, 1993b. Drosophila alcohol dehydrogenase polymorphism and carbon-13 fluxes: opportunities for epistasis and natural selection. Genetics, submitted.

  • FreriksenA. & P. W. H.Heinstra, 1993. A novel ancestral protein of Drosophila alcohol dehydrogenase in Streptomyces? Biochem. Genet. 31: 391–405.

    Google Scholar 

  • GarcinF. J., J.Côté, S.Radouco-Thomas, D.Kasenczuk, S.Chawla & C.Radouco-Thomas, 1983. Acetaldehyde oxidation in Drosophila melanogaster and D. simulans: evidence for the presence of an NAD+-dependent aldehyde dehydrogenase. Comp. Biochem. Physiol. 75B: 205–210.

    Google Scholar 

  • GarcinF. J., HinG. L., CôtéJ., Radouco-ThomasC., ChawlaS. & Radouco-ThomasC., 1985. Aldehyde dehydrogenase in Drosophila: developmental and functional aspects. Alcohol 2: 85–89.

    Google Scholar 

  • GeerB. W., S. W.McKechnie & M. L.Langevin, 1983. Regulation of sn-glycerol-3-phosphate dehydrogenase in Drosophila melanogaster larvae by dictary ethanol and sucrose. J. Nutr. 113: 1632–1642.

    Google Scholar 

  • GeerB. W., M. L.Langevin & S. W.McKechnie, 1985. Dictary ethanol and lipid synthesis in Drosophila melanogaster. Biochem. Genet. 23: 607–622.

    Google Scholar 

  • GeerB. W., S. W.McKechnie, M. M.Bentley, J. G.Oakeshott, E. M.Quinn & M. L.Langevin, 1988. Induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster. J. Nutr. 118: 398–407.

    Google Scholar 

  • GeerB. W., L. K.Dybas & L. J.Shanner, 1989. Alcohol dehydrogenase and ethanol tolerance at the cellular level in Drosophila melanogaster. J. Exp. Zool. 250: 22–39.

    Google Scholar 

  • GeerB. W., P. W. H.Heinstra, A. M.Kapoun & A.van derZel, 1990. Alcohol dehydrogenase and alcohol tolerance in Drosophila melanogaster. In: Ecological and Evolutionary Genetics of Drosophila (J. S. F.Barker et al., eds) pp. 231–252, Plenum Press, New York.

    Google Scholar 

  • GeerB. W., R. R.MillerJr & P. W. H.Heinstra, 1991. Genetic and dictary control of alcohol degradation in Drosophila. In: Drug and Alcohol Abuse Reviews (R. R.Watson, ed.). Vol. 2 pp. 325–373. The Humana Press Inc. Clifton, New Jersey.

    Google Scholar 

  • GeerB. W., S. W.McKechnie, P. W. H.Heinstra & M.Pyka, 1991. Heritable variation in ethanol tolerance and its association with biochemical traits in Drosophila melanogaster. Evolution 45: 1107–1119.

    Google Scholar 

  • GeerB. W., P. W. H.Heinstra & S. W.McKechnie, 1993. The biological basis of ethanol tolerance in Drosophila. Comp. Biochem. Physiol. 105B: 203–229.

    Google Scholar 

  • GelfandL. J. & J. F.McDonald, 1980. Relationship between ADH activity and behavioral response to environmental alcohol in Drosophila. Behav. Genet. 10: 237–249.

    Google Scholar 

  • GibsonJ. B., 1972. Differences in the number of molecules produced by two allelic electrophoretic enzyme variants in Drosophila melanogaster. Experientia 28: 975–976.

    Google Scholar 

  • GibsonJ. B., T. W.May & A. V.Wilks, 1981. Genetic variation at the alcohol dehydrogenase locus in Drosophila melanogaster in relation to environmental variation: ethanol levels in breeding sites and allozyme frequencies. Oecologia 51: 191–198.

    Google Scholar 

  • GibsonJ. B. & J. G.Oakeshott, 1982. Tests of the adaptive significance of the alcohol dehydrogenase polymorphism in Drosophila melanogaster: paths, pitfalls and prospects. In: Ecological Genetics and Evolution (J. S. F.Barker & W. T.Starmer, eds.) pp. 291–306. Academic Press, Australia.

    Google Scholar 

  • GibsonJ. B. & A. V.Wilks, 1988. The alcohol dehydrogenase polymorphism of Drosophila melanogaster in relation to environmental ethanol, ethanol tolerance and alcohol dehydrogenase activity. Heredity 60: 403–414.

    Google Scholar 

  • GillespieJ. H., 1991. The causes of molecular evolution. Oxford University Press. New York, Oxford.

    Google Scholar 

  • HagemanJ., K. Th.Eisses, P. J. M.Jacobs & W.Scharloo, 1990. Ethanol in Drosophila cultures as a selective factor. Evolution 44: 447–454.

    Google Scholar 

  • HartlD. L. & D. E.Dykhuizen, 1981. Potential for selection among nearly neutral allozymes of 6-phosphogluconate dehydrogenase in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 6344–6348.

    Google Scholar 

  • HartlD. L., D. E.Dykhuizen & A. M.Dean, 1985. Limits of adaptation: the evolution of selective neutrality. Genetics 111: 655–674.

    Google Scholar 

  • Hartman, J. R., L. K. Dybas & B. W. Geer, 1993. At high dietary levels ethanol alters the structure of mid- and hindgut cells of Drosophila melanogaster larvae. J. Exp. Zool., in press.

  • HeinstraP. W. H., K. Th.Eisses, W. G. E. J.Schoonen, W. J. M.Aben, A. J.deWinter, D. J.van derHorst, W. J.vanMarrewijk, A. M. Th.Beenakkers, W.Scharloo & G. E. W.Thörig, 1986. A dual function of alcohol dehydrogenase in Drosophila. Genetica 60: 129–137.

    Google Scholar 

  • HeinstraP. W. H., W. J. M.Aben, W.Scharloo & G. E. W.Thörig, 1986. Alcohol dehydrogenase of Drosophila melanogaster: metabolic differences mediated through cryptic allozymes. Heredity 57: 23–29.

    Google Scholar 

  • HeinstraP. W. H., W.Scharloo & G. E. W.Thörig, 1987. Physiological significance of the alcohol dehydrogenase polymorphism in larvae of Drosophila. Genetics 117: 75–84

    Google Scholar 

  • HeinstraP. W. H., W.Scharloo & G. E. W.Thörig, 1988. Alcohol dehydrogenase polymorphism in Drosophila: enzyme kinetics of product inhibition. J. Mol. Evol. 28: 145–150.

    Google Scholar 

  • HeinstraP. W. H., G. E. W.Thörig, W.Scharloo, W.Drenth & R. J. M.Nolte, 1988. Kinetics and thermodynamics of ethanol oxidation catalyzed by genetic variants of the alcohol dehydrogenase from Drosophila melanogaster and D. simulans. Biochim. Biophys. Acta 967: 224–233.

    Google Scholar 

  • HeinstraP. W. H., B. W.Geer, D.Seykens & M. L.Langevin, 1989. The metabolism of ethanol-derived acetaldehyde by alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (EC 1.2.1.3) in Drosophila melanogaster larvae. Biochem. J. 259: 791–797.

    Google Scholar 

  • HeinstraP. W. H., D.Seykens, A.Freriksen & B. W.Geer, 1990. Metabolic-physiology of alcohol degradation and adaptation in Drosophila larvae as studied by means of carbon-13 nuclear magnetic resonance spectroscopy. Insect Biochem. 20: 343–348.

    Google Scholar 

  • HeinstraP. W. H. & B. W.Geer, 1991. Metabolic control analysis and enzyme variation: nutritional manipulation of the flux from ethanol to lipids in Drosophila. Mol. Biol. Evol. 8: 703–708.

    Google Scholar 

  • Heinstra, P. W. H., M. E. Whiteside, J. Ochoa-Nelson, C. Baumgardner, C. C. Laurie & B. W. Geer, 1993. The flux control coefficient for alcohol dehydrogenase varies over a range of activity due to Adh gene dosage modification in Drosophila melanogaster. In preparation.

  • HoffmannA. A. & S. W.McKechnie, 1991. Heritable variation in resource utilization and response in a winery population of Drosophila melanogaster. Evolution 45: 1000–1015.

    Google Scholar 

  • JeffsP. & M.Ashburner, 1991. Processed pseudogenes in Drosophila. Proc. R. Soc. Lond. 244: 151–159.

    Google Scholar 

  • JiangJ. C., J. B.Gibson & H.Chen, 1989. Genetic differentiation in populations of Drosophila melanogaster from the People's Republic of China: comparison with patterns on other continents. Heredity 62: 193–198.

    Google Scholar 

  • JiangJ. C. & J. B.Gibson, 1992. The alcohol dehydrogenase polymorphism in natural populations of Drosophila melanogaster: ADH activity variation, restriction site polymorphism and the Adh cline. Heredity 68: 337–344.

    Google Scholar 

  • JörnvallH., B.Persson, M.Krook & R.Kaiser, 1990. Alcohol dehydrogenases. Biochem. Soc. Trans. 18: 169–171.

    Google Scholar 

  • KapounA. M., B. W.Geer, P. W. H.Heinstra, V.Corbin & S. W.McKechnie, 1990. Molecular control of the induction of alcohol dehydrogenase by ethanol in Drosophila melanogaster larvae. Genetics 124: 881–888.

    Google Scholar 

  • KeightleyP. D. & H.Kacser, 1987. Dominance, pleiotropy and metabolite structure. Genetics 117: 319–329.

    Google Scholar 

  • KerverW. J. M. & G.Rotman, 1987. Development of ethanol tolerance in relation to the alcohol dehydrogenase locus in Drosophila melanogaster. II. The influence of phenotypic adaptation and maternal effect on survival on alcohol supplemented media. Heredity 58: 239–248.

    Google Scholar 

  • KimuraM., 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • KreitmanM., 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature 304: 412–417.

    Google Scholar 

  • KreitmanM., 1987. Molecular population genetics. In: Oxford surveys in evolutionary biology (P. H.Harvey & L.Partridge, eds) pp. 38–60, Oxford University Press, Oxford, UK.

    Google Scholar 

  • KreitmanM. & R. R.Hudson, 1991. Inferring the evolutionary histories of the Adh and Adh-dup loci in Drosophila melanogaster from patterns of polymorphism and divergence. Genetics 127: 565–582.

    Google Scholar 

  • KrozowskiZ., 1992. 11β-Hydroxysteroid dehydrogenase and the short-chain alcohol dehydrogenase (SCAD) superfamily. Mol. Cell. Endocrinol. 84C: 25–31.

    Google Scholar 

  • LaurieC. C. & L. F.Stam, 1988. Quantitative analysis of RNA produced by Slow and Fast alleles of Adh in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 85: 5161–5165.

    Google Scholar 

  • LaurieC. C., E. M.Heath, J. W.Jacobson & M. S.Thomson, 1990. Genetic basis of the difference in alcohol dehydrogenase expression between Drosophila melanogaster and D. simulans. Proc. Natl. Acad. Sci. USA 87: 9674–9678.

    Google Scholar 

  • LaurieC. C., J. T.Bridgham & M.Choudhary, 1991. Associations between DNA sequence variation and variation in expression of the Adh gene in natural populations of Drosophila melanogaster. Genetics 129: 489–499.

    Google Scholar 

  • LealJ. F. & M.Barbancho, 1992. A etaldehyde detoxification mechanisms in Drosophila melanogaster adults involving aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) enzymes. Insect Biochem. Molec. Biol. 22: 885–892.

    Google Scholar 

  • LealJ. F. & M.Barbancho, 1993. Aldehyde dehydrogenase (ALDH) activity in Drosophila melanogaster adults: evidence for cytosolic localization. Insect Biochem. Molec. Biol. 23: 543–547.

    Google Scholar 

  • LewisN. & J. B.Gibson, 1978. Variation in amount of enzyme protein in natural populations. Biochem. Genet. 16: 159–170.

    Google Scholar 

  • LissemoreJ. L., C. A.Baumgardner, B. W.Geer & D. T.Sullivan, 1990. Effect of dietary carbohydrates and ethanol on expression of genes encoding glycerol-3-phosphate dehydrogenase, aldolase, and phosphoglycerate kinase in Drosophila larvae. Biochem. Genet. 28: 615–630.

    Google Scholar 

  • LongM. & C. H.Langley, 1993. Natural selection and the origin of jingwei, a chimeric processed functional gene in Drosophila. Science 260: 91–95.

    Google Scholar 

  • MarfanyG. & R.Gonzàlez-Duarte, 1991. The Adh genomic region of Drosophila ambigua: evolutionary trends in different species. J. Mol. Evol. 32: 454–462.

    Google Scholar 

  • MarfanyG & R.Gonzàlez-Duarte, 1992. The Drosophila subobseura Adh genomic region contains valuable evolutionary markers. Mol. Biol. Evol. 9: 261–277.

    Google Scholar 

  • MatthewP., A.Agrotis, C.Taylor & S. W.McKechnie, 1992. An association between ADH protein levels and polymorphic nucleotide variation in the Adh gene of Drosophila melanogaster. Mol. Biol. Evol. 9: 526–536.

    Google Scholar 

  • McDonaldJ. F., S. M.Anderson & M.Santos, 1980. Biochemical differences between products of the Adh locus in Drosophila. Genetics 95: 1013–1022.

    Google Scholar 

  • McDonaldJ. H. & M.Kreitman, 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652–654.

    Google Scholar 

  • McKechnieS. W. & P.Morgan, 1982. Alcohol dehydrogenase polymorphism of Drosophila melanogaster: aspects of alcohol and temperature variation in the larval environment. Aust. J. Biol. Sci. 95: 85–93.

    Google Scholar 

  • McKechnieS. W. & J. A.McKenzie, 1983. Polymorphism of alcohol dehydrogenase (ADH) in a winery cellar population of Drosophila melanogaster: gene frequency association with temperature and genotype differences in progeny production. Evolution 37: 850–853.

    Google Scholar 

  • McKechnieS. W. & B. W.Geer, 1984. Regulation of alcohol dehydrogenase in Drosophila melanogaster by dietary alcohol and carbohydrate. Insect Biochem. 14: 231–242.

    Google Scholar 

  • McKechnieS. W. & B. W.Geer, 1988. The epistasis of Adh and Gpdh allozymes and variation in the ethanol tolerance of Drosophila melanogaster larvae. Genet. Res. Camb. 52: 179–184.

    Google Scholar 

  • McKechnieS. W., J. L.Ross & K. L.Turney, 1990. Environmental modulation of sn-glycerol-3-phosphate oxidase (GPO) activity in larvae of Drosophila melanogaster. In: Ecological and Evolutionary Genetics of Drosophila (J. S. F.Barker et al., eds.) pp. 253–271, Plenum Press, New York.

    Google Scholar 

  • McKenzieJ. A. & P. A.Parsons, 1972. Alcohol tolerance: an ecological parameter in the relative success of Drosophila melanogaster and D. simulans. Oecologia 10: 373–388.

    Google Scholar 

  • McKenzieJ. A. & P. A.Parsons, 1974. Microdifferentiation in a natural population of Drosophila melanogaster to alcohol in the environment. Genetics 77: 385–394.

    Google Scholar 

  • McKenzieJ. A. & S. W.McKechnie, 1979. A comparative study of resource utilization in natural populations of Drosophila melanogaster and D. simulans. Oecologia 40: 299–309.

    Google Scholar 

  • MiddletonR & H.Kacser, 1983. Enzyme variation, metabolic flux, and fitness: alcohol dehydrogenase in Drosophila melanogaster. Genetics 105: 633–650.

    Google Scholar 

  • MillerR. R.Jr., P. W. H.Heinstra & B. W.Geer, 1992. Metabolic flux and the role of lipid in alcohol tolerance in Drosophila. In: Nutrition & Alcohol (R. R.Watson & B.Watzl, eds) pp. 205–244, CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • MoxonL. N., R. S.Holmes, P. A.Parsons, M. G.Irving & D. M.Doddrell, 1985. Purification and molecular properties of alcohol dehydrogenase from Drosophila melanogaster: evidence from NMR and kinetic studies for function as an aldehyde dehydrogenase. Comp. Biochem. Physiol. 80B: 525–535.

    Google Scholar 

  • NeidleE., C.Hartnett, L. N.Ornston, S. A.Bairoch, M.Rekik & S.Harayama, 1992. Cis-diol dehydrogenases encoded by the TOLpWWO plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204: 113–120.

    Google Scholar 

  • OakeshottJ. G., 1976. Selection at the alcohol dehydrogenase locus in Drosophila melanogaster imposed by environmental ethanol. Genet. Res. Camb. 26: 265–274.

    Google Scholar 

  • OakeshottJ. G., J. B.Gibson, P. R.Anderson, W. R.Knibb, D. G.Anderson & G. K.Chambers, 1982. Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in Drosophila melanogaster on different continents. Evolution 36: 86–96.

    Google Scholar 

  • OlliverS. G., Q. J. M.van derAart, M. L.Agostoni-Carbone, M. L., et al., 1992. The complete DNA sequence of yeast chromosome III. Nature 357: 38–46.

    Google Scholar 

  • OudmanL., W.vanDelden, A.Kamping & R.Bijlsma, 1991. Polymorphism at the Adh and α-Gpdh loci in Drosophila melanogaster: effects of rearing temperature on developmental rate, body weight, and some blochemical parameters. Heredity 67: 103–115.

    Google Scholar 

  • OudmanL., W.vanDelden, A.Kamping & R.Bijlsma, 1992. Interaction between the Adh and α-Gpdh loci in Drosophila melanogaster: adult survival at high temperature. Heredity 68: 289–297.

    Google Scholar 

  • Pecsenye, K., 1990. Ethanol stress in Drosophila melanogaster. Ph.D. thesis. University of Umeå, Sweden.

    Google Scholar 

  • PerssonB., M.Krook & H.Jörnvall, 1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200: 537–543.

    Google Scholar 

  • PowersD. A., T.Lauerman, D.Crawford & L.DiMichelle, 1991. Genetic mechanisms for adapting to a changing environment. Ann. Rev. Genet. 25: 629–659.

    Google Scholar 

  • RatL., M.Veuille & J. A.Lepesant, 1991. Drosophila fat body protein P6 and alcohol dehydrogenase are derived from a common ancestral protein. J. Mol. Evol. 33: 194–203.

    Google Scholar 

  • ReyM., A. M.Palermo & E. R.Muñoz, 1992. Nondisjuction induced by ethanol in Drosophila melanogaster females. Mutation Res. 268: 95–104.

    Google Scholar 

  • RogersJ. H., 1990. The role of introns in evolution. FEBS Lett. 268: 339–343.

    Google Scholar 

  • SavakisC., M.Ashburner & J. H.Willis, 1986. The expression of the gene coding for alcohol dehydrogenase during the development of Drosophila melanogaster. Devel. Biol. 114: 194–207.

    Google Scholar 

  • ScharlooW., 1988. Selection on morphological patterns. In: Population Genetics and Evolution (G.deJong, ed.) pp. 230–250, Springer Verlag, Berlin.

    Google Scholar 

  • SchaefferS. W. & C. F.Aquadro, 1987. Nucleotide sequence of the Adh gene region of Drosophila pseudoobscura: evolutionary changes and evidence for an ancient gene duplication. Genetics 117: 61–73.

    Google Scholar 

  • SchaefferS. W. & E. L.Miller, 1992. Molecular population genetics of an electrophoretically monomorphic protein in the alcohol dehydrogenase region of Drosophila pseudoobscura. Genetics 132: 163–178.

    Google Scholar 

  • SimmonsG. M., M.Kreitman, W. F.Quattlebaum & N.Miyashita, 1989. Molecular analysis of the alleles of alcohol dehydrogenase along a cline in Drosophila melanogaster. I. Maine, North Carolina, and Florida. Evolution 43: 393–409.

    Google Scholar 

  • SoferW. & P. F.Martin, 1987. Analysis of alcohol dehydrogenase gene expression in Drosophila. Annu. Rev. Genet. 21: 203–235.

    Google Scholar 

  • StarmerW. T. & D. T.Sullivan, 1989. A shift in third-codon position nucleotide frequency in alcohol dehydrogenase genes in the genus Drosophila. Mol. Biol. Evol. 6: 546–552.

    Google Scholar 

  • StephensJ. C. & M.Nei, 1985. Phylogenetic analysis of polymorphic DNA sequences at the Adh locus in Drosophila melanogaster and its sibling species. J. Mol. Evol. 22: 289–300.

    Google Scholar 

  • SullivanD. T., P. W.Atkinson & W. T.Starmer, 1990. Molecular evolution of the alcohol dehydrogenase genes in the genus Drosophila. In: Evolutionary Biology (M.Hecht, B.Wallace & G.Prance, eds.) Vol. 24 pp. 107–147. Plenum Press London and New York.

    Google Scholar 

  • ThatcherD. R., 1980. The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes from the fruit fly Drosophila. Biochem. J. 187; 875–883.

    Google Scholar 

  • ThomsonM. S., J. W.Jacobson & C. C.Laurie, 1991. Comparison of alcohol dehydrogenase expression in Drosophila melanogaster and D. simulans. Mol. Biol. Evol. 8: 31–48.

    Google Scholar 

  • vanDeldenW., 1982. The alcohol dehydrogenase polymorphism in Drosophila melanogaster: selection at an enzyme locus. In: Evolutionary Biology (M.Hecht, B.Wallace & G.Prance, eds.) Vol. 15. pp. 187–222. Plenum Press London and New York

    Google Scholar 

  • vanDeldenW., A. C.Boerema & A.Kamping, 1978. The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster. I. Selection in different environments. Genetics 90: 161–191.

    Google Scholar 

  • vanDeldenW. & A.Kamping, 1979. The alcohol dehydrogenase polymorphism in populations of Drosophila melanogaster. 3. Differences in developmental time. Genet. Res. Camb. 33: 15–27.

    Google Scholar 

  • vanDeldenW. & A.Kamping, 1988. Selection against Adh null alleles in Drosophila melanogaster. Heredity 61: 209–216.

    Google Scholar 

  • van derZelA., R.Dadoo, B. W.Geer & P. W. H.Heinstra, 1990. The involvement of catalase in alcohol metabolism in Drosophila melanogaster larvae. Arch. Biochem. Biophys. 287: 121–127.

    Google Scholar 

  • VillarroyaA. & E.Juan, 1991. ADH and phylogenetic relationships of Drosophila lebanonensis (Scaptodrosophila). J. Mol. Evol. 32: 421–428.

    Google Scholar 

  • Vouidibio, J., P. Capy, D. Defaye, E. Pla, J. Sandrin, A. Csink & J. R. David, 1989. Short-range genetic structure of Drosophila melanogaster populations in an Afrotropical urban area and its significance. Proc. Natl. Acad. Sci. USA 8442-8446.

  • WalshK. & D. E.Koshland, 1985. Characterization of ratecontrolling steps in vivo by use of an adjustable expression vector. Proc. Natl. Acad. Sci. USA 82: 3577–3581.

    Google Scholar 

  • WattW. B., 1985. Bioenergetics and evolutionary genetics: opportunities for new synthesis. Am. Nat. 125: 118–143.

    Google Scholar 

  • WinbergJ-O., R.Hovik & J. S.McKinley-McKee, 1985. The alcohol dehydrogenase alleloenzymes ADH-S and ADH-F from the fruit fly Drosophila melanogaster: an enzymatic rate assay to determine the active-site concentration. Biochem. Genet. 23: 205–216.

    Google Scholar 

  • WinbergJ-O. & J. S.McKinley-McKee, 1992. Kinetic interpretations of active site topologies and residue exchanges in Drosophila alcohol dehydrogenases. Int. J. Biochem. 24: 169–181.

    Google Scholar 

  • ZeraA. J., R. K.Koehn & J. G.Hall, 1985. Allozymes and biochemical adaptation. In: Comprehensive insect physiology, biochemistry, and pharmacology (G. A.Kerkut & L. I.Gilbert, eds.) Vol. 10. pp. 633–674. Pergamon Press New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Billy W. Geer, because of his contributions to knowledge of the biochemical genetics of Drosophila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinstra, P.W.H. Evolutionary genetics of the Drosophila alcohol dehydrogenase gene-enzyme system. Genetica 92, 1–22 (1993). https://doi.org/10.1007/BF00057503

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00057503

Key words

Navigation