Skip to main content
Log in

Evaluation of a model for the effects of substrate interactions on the kinetics of reductive dehalogenation

  • Regular Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The effects of primary electron-donor and electron-acceptor substrates on the kinetics of TCA biodegradation in sulfate-reducing and methanogenic biofilm reactors are presented. Of the common anaerobic electron-donor substrates that were tested, only formate stimulated the TCA biodegradation rate in both reactors. In the sulfate-reducing reactor, glucose also stimulated the reaction rate. The effects of formate and sulfate on TCA biodegradation kinetics were analyzed using a model for primary substrate effects on reductive dehalogenation. Although some differences between the model and the data are evident, the observed responses of the TCA degradation rate to formate and sulfate were consistent with the model. Formate stimulated the TCA degradation rate in both reactors over the entire range of TCA concentrations that were studied (from 50 μg TCA/L to 100 mg TCA/L). The largest effects occurred at high TCA concentrations, where the dehalogenation kinetics were zero order. Sulfate inhibited the first-order TCA degradation rate in the sulfate-reducing reactor, but not in the methanogenic reactor. Molybdate, which is a selective inhibitor of sulfate reduction, stimulated the TCA removal rate in the sulfate-reducing reactor, but had no effect in the methanogenic reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, B & Davies, IJ (1974) The overall rate of substrate uptake (reaction) by microbial films. Part I—A biological rate equation. Trans. Inst. Chem. Engin. 52: 248–259

    Google Scholar 

  • Bouwer, EJ & McCarty, PL (1983) Transformations of 1-and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 45: 1286–1294

    Google Scholar 

  • Bouwer, EJ & Wright, JP (1988) Transformation of trace halogenated aliphatics in anoxic biofilm columns. J. Contam. Hydrol. 2: 155–169

    Google Scholar 

  • Cornish-Bowden, A (1979) Fundamentals of Enzyme Kinetics. Butterworth and Co., Ltd., London

    Google Scholar 

  • Criddle, CS, DeWitt, JT, Grbić-Galić, D & McCarty, PL (1990) Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl. Environ. Microbiol. 56: 3240–3246

    Google Scholar 

  • Criddle, CS & McCarty, PL (1991) Electrolytic model system for reductive dehalogenation in aqueous environments. Environ. Sci. Technol. 25: 973–978

    Google Scholar 

  • Cseh, T, Sanschagrin, S, Hawari, J & Samson, R (1989) Adsorption-desorption characteristics of polychlorinated biphenyls on various polymers commonly found in laboratories. Appl. Environ. Microbiol. 55: 3150–3154

    Google Scholar 

  • Dang, JS, Harvey, DM, Jabbagy, A & Grady, CPLJr (1989) Evaluation of biodegradation kinetics with respirometric data. Res. J. Water Pollut. Control Fed. 61: 1711–1721

    Google Scholar 

  • DeWeerd, KA & Suflita, JM (1990) Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of Desulfomonile tiedjei. Appl. Environ. Microbiol. 56: 2999–3005

    Google Scholar 

  • DeWeerd, KA, Concannon, F & Suflita, JM (1991) Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl. Environ. Microbiol. 57: 1929–1934

    Google Scholar 

  • Dolfing, J (1988) Acetogenesis. In: Zehnder, AJB (Ed.) Biology of Anaerobic Microorganisms (pp. 417–468). John Wiley & Sons, Inc., New York

    Google Scholar 

  • Egli, C, Scholtz, R, Cook, AM & Leisinger, T (1987) Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Let. 43: 257–261

    Google Scholar 

  • Egli, C, Tschan, T, Scholtz, R, Cook, AM & Leisinger, T (1988) Transformation of CCl4 to CH2Cl2 and CO2 by Acetobacterium woodii. App. Environ. Microbiol. 54: 2819–2824

    Google Scholar 

  • Egli, C, Stromeyer, S, Cook, AM & Leisinger, T (1990) Transformation of tetra- and trichloromethane to CO2 by anaerobic bacteria is a non-enzymic process. FEMS Microbiol. Letters 68: 207–212

    Google Scholar 

  • Ensley, BD (1991) Biochemical diversity of trichloroethylene metabolism. Ann. Rev. Microbiol. 45: 283–299

    Google Scholar 

  • Fathepure, BZ & Boyd, SA (1988a) Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl. Environ. Microbiol. 54: 2976–2980

    Google Scholar 

  • Fathepure, BZ (1988b) Reductive dechlorination of perchloroethylene and the role of methanogens. FEMS Microbiol. Let. 49: 149–156

    Google Scholar 

  • Freedman, DL & Gossett, JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151

    Google Scholar 

  • Gälli, R & McCarty, PL (1989a) Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl. Environ. Microbiol. 55: 837–844

    Google Scholar 

  • Gälli, R (1989b) Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB. Appl. Environ. Microbiol. 55: 845–851

    Google Scholar 

  • Gantzer, CJ, Rittmann, BE & Herricks, EE (1988) Mass transfort to streambed biofilms. Water Research 22: 709–722

    Google Scholar 

  • Gibson, SA & Suflita, JM (1990) Anaerobic biodegradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer. Stimulation by short-chain organic acids and alcohols. Appl. Environ. Microbiol. 56: 1825–1832

    Google Scholar 

  • Goldman, P (1972) Enzymology of carbon-halogen bonds. In: The degradation of synthetic organic molecules in the biosphere (pp. 147–165). National Academy of Sciences, Washington, DC

    Google Scholar 

  • Goldman, P, Milne, GWA & Keister, DB (1968) Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. J. Biol. Chem. 243: 428–434.

    Google Scholar 

  • Grady, CPLJr, Dang, JS, Harvey, DM, Jabbagy, A & Wang, X-L (1989) Determination of biodegradation kinetics through use of electrolytic respirometry. Water Sci. Technol. 21: 957–968

    Google Scholar 

  • Groenewegen, PEJ, Driessen, AJM, Konings, WN & deBont, JAM (1990) Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1. J. Bacteriol. 172: 419–423

    Google Scholar 

  • Henderson, JE, Peyton, GR & Glaze, WH (1976) A convenient liquid-liquid extraction method for the determination of halomethanes in water at the parts-per-billion level. In: Keith, LH (Ed.) Identification and Analysis of Organic Pollutants in Water (pp. 105–111). Ann. Arbor Science Publishers, Inc., Ann Arbor, MI

    Google Scholar 

  • Holliger, C, Schraa, G, Stams, AJM & Zehnder, AJB (1993) A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl. Environ. Microbiol. 59: 2991–2997

    Google Scholar 

  • Janssen, DB, Scheper, A, Dijkhuizen, L & Witholt, B (1985) Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl. Environ. Microbiol. 49: 673–677

    Google Scholar 

  • Janssen, DB & Witholt, B (1992) Aerobic and anaerobic degradation of halogenated aliphatics. In: Sigel, H & Sigel, A (Eds) Metal Ions in Biological Systems, Vol. 28 (pp. 299–327). Marcel Dekker, New York

    Google Scholar 

  • Janssen, DB, Pries, F & van derPloeg, JR (1994) Genetics and biochemistry of dehalogenating enzymes. Ann. Rev. Microbiol. 48: 163–191

    Google Scholar 

  • Jones, WJ, NagleJr, DP & Whitman, WB (1987) Methanogens and the diversity of archaebacteria. Microbiol. Rev. 51: 135–177

    Google Scholar 

  • Kohler-Staub, D & Leisinger, T (1985) Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 162: 676–681

    Google Scholar 

  • Krone, UE, Laufer, K, Thauer, RK & Hogenkamp, HPC (1989) Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C1 hydrocarbons in methanogenic bacteria. Biochemistry 28: 10,061–10,065

    Google Scholar 

  • Krone, UE, Thauer, RK, Hogenkamp, HPC & Steinbach, K (1991) Reductive formation of carbon monoxide from CCl4 and FREONs 11, 12, and 13 catalyzed by corrinoids. Biochemistry 30: 2713–2719

    Google Scholar 

  • Lage, GB, Parsons, FZ, Nasser, RS & Lorenzo, PA (1986) Sequential dehalogenation of chlorinated ethenes. Environ. Sci. Technol. 20: 96–99

    Google Scholar 

  • Lage, GB, Parsons, FZ & Nasser, RS (1987) Kinetics of the depletion of TCE. Environ. Sci. Technol. 21: 366–370

    Google Scholar 

  • Lam, T & Vilker, VL (1987) Biodehalogenation of bromotrichloroethane and 1,2-dibromo-3-chloropropane by Pseudomonas putida PpG-786. Biotechnol. Bioeng. 29: 151–159

    Google Scholar 

  • Mikesell, MD & Boyd, SA (1990) Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 56: 1198–1201

    Google Scholar 

  • Morrison, RT & Boyd, RN (1973) Organic Chemistry. Allyn & Bacon, Inc., Boston, MA

    Google Scholar 

  • Mosey, FE (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci. Technol. 15: 209–232

    Google Scholar 

  • Oremland, RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder, AJB (Ed.) Biology of Anaerobic Microorganisms (pp. 641–705). John Wiley & Sons, Inc., New York

    Google Scholar 

  • Oremland, RS & Capone, DG (1988) Use of ‘specific’ inhibitors in biogeochemistry and microbial ecology. Adv. Microbial Ecology 10: 285–383

    Google Scholar 

  • Parsons, F & Lage, GB (1985) Chlorinated organics in simulated groundwater environments. J. Amer. Water Works Assn. 77: 56–59

    Google Scholar 

  • Rittmann, BE & McCarty, PL (1981) Substrate flux into biofilms of any thickness. J. Environ. Eng. (ASCE) 107: 831–848

    Google Scholar 

  • Rittmann, BE, Crawford, LA, Tuck, CK & Namkung, E (1986) In situ determination of kinetic parameters for biofilms. Isolation and characterization of oligotrophic biofilms. Biotechnol. Bioeng. 28: 1753–1760

    Google Scholar 

  • Sáez, PB & Rittmann, BE (1992) Model-parameter estimation using least squares. Water Research 26: 789–796

    Google Scholar 

  • Scholz-Muramatsu, H, Szewzyk, R, Szewzyk, U & Gaiser, S (1990) Tetrachloroethylene as electron acceptor for the anaerobic degradation of benzoate. FEMS Microbiol. Let. 66: 81–86

    Google Scholar 

  • Semprini, L, Hopkins, GD, McCarty, PL & Roberts, PV (1992) In situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions. Environ. Sci. Technol. 26: 2454–2461

    Google Scholar 

  • Stanley, TJ, WardIII, WJ & Alger, MM (1989) CH2Cl2 permeation in polycarbonate using a 14C-tracer. Ind. Eng. Chem. Res. 28: 1494–1497

    Google Scholar 

  • Stromeyer, SA, Stumpf, K, Cook, AM & Leisinger, T (1992) Anaerobic degradation of tetrachloromethane by Acetobacterium woodii: Separation of dechlorinative activities in cell extracts and roles for vitamin B12 and other factors. Biodegradation 3: 113–123

    Google Scholar 

  • Suidan, MT, Rittmann, BE & Traegner, UK (1987) Criteria establishing biofilm-kinetic types. Water Research 21: 491–498

    Google Scholar 

  • vanGenuchten, MT (1982) Analytical solutions for chemical transport with simultaneous adsorption, zero-order production and first-order decay. J. Hydrol. 49: 213–233

    Google Scholar 

  • Vogel, TM & McCarty, PL (1985) Biotransformation of PCE to TCE, DCE, VC, and CO2 under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083

    Google Scholar 

  • Vogel, TM & McCarty, PL (1987) Abiotic and biotic transformations of 1,1,1-TCA under methanogenic conditions. Environ. Sci. Technol. 21: 1208–1213

    Google Scholar 

  • Vogel, TM, Criddle, CS & McCarty, PL (1987) Transformations of halogenated aliphatic compounds. Environ. Sci. Technol. 21: 722–736

    Google Scholar 

  • Wackett, L, Logan, MSP, Blocki, FA & Bao-li, C (1992) A mechanistic perspective on bacterial metabolism of chlorinated methanes. Biodegradation 3: 19–36

    Google Scholar 

  • Wade, RS & Castro, CE (1973) Oxidation of iron(II) porphyrins by alkyl halides. J. Amer. Chem. Soc. 95: 226–230

    Google Scholar 

  • Widdel, F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder, AJB (Ed.) Biology of Anserobic Microorganisms (pp. 468–585). John Wiley & Sons, Inc., New York

    Google Scholar 

  • Wolin, MJ (1982) Hydrogen transfer in microbial communities. In: Bull, AT & Slater, JH (Eds) Microbial Interactions and Communities, Vol. 1 (pp. 323–356) Academic Press, New York

    Google Scholar 

  • Wrenn BA (1992) Substrate interactions during the anaerobic biodegradation of 1,1,1-trichloroethane. Ph.D. Thesis, Dept. of Civil Engr., University of Illinois, Urbana, IL

  • Wrenn BA & Rittmann BE (in press) A model for the effects of primary substrates on reductive dehalogenation kinetics. Biodegradation

  • Zeikus, JG (1980) Microbial populations in digesters. In: Stafford, DA, Wheatley, BI & Hughes, DE (Eds) Anaerobic Digestion (pp. 61–87) Applied Science Publishers, Ltd., London

    Google Scholar 

  • Zeikus JG (1983) Metabolic communications between biodegradative populations in nature. In: Slater JH, Whittenbury R & Wimpenny JWT (Eds) Microbes in Their Natural Environments (pp. 423–461) Cambridge University Press

  • Zeikus, JG, Kerby, R & Krzycki, JA (1985) Single-carbon chemistry of acetogenic and methanogenic bacteria. Science 227: 1167–1173

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wrenn, B.A., Rittmann, B.E. Evaluation of a model for the effects of substrate interactions on the kinetics of reductive dehalogenation. Biodegradation 7, 49–64 (1996). https://doi.org/10.1007/BF00056558

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056558

Key words

Navigation