, Volume 7, Issue 5, pp 415–423 | Cite as

Screening of bacteria, isolated from PAH-contaminated soils, for production of biosurfactants and bioemulsifiers

  • Pia A. Willumsen
  • Ulrich Karlson


Fifty-seven bacterial strains were isolated from PAH-contaminated soils using PAH-amended minimal medium. The isolates were screened for their production of biosurfactants and bioemulsifiers when grown in liquid media containing selected PAHs. The results suggest that many, but not all, of the isolates are able to produce biosurfactants or bioemulsifiers under the experimental conditions. The majority of the strains isolated on phenanthrene, pyrene, and fluoranthene were better emulsifiers than surface tension reducers and the stability of the formed emulsions was in general high. The strains isolated on anthracene were in general better in lowering the surface tension than in forming emulsions. In all strains, reduction of surface tension and emulsion formation did not correlate. However, in the majority of strains the two factors were associated with the bacterial cell surfaces, rather than the culture supernatants. Nevertheless, supernatants from selected surfactant-producing anthracene isolates increased the aqueous solubility of anthracene. Although a significant potential for surfactant and emulsifier production in the microbiota of the PAH-contaminated soils was found in this study, the ability of individual strains to mineralize PAHs did not coincide with production of surface-active compounds.

Key words

biodegradation bioemulsifier biosurfactant polyaromatic hydrocarbons soil bacteria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen PG, Francy DS, Duston KL, Thomas JM & Ward CH (1992) Biosurfactant production and emulsification capacity of subsurface microorganisms. Soil Decontamination Using Biological Processes. Karlsruhe, DECHEMA, Fedeal Republic of Germany.Google Scholar
  2. Aronstein BN, Calvillo YM & Alexander m (1991) Effects of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Enviro. Sci Technol. 25: 1728–1731.Google Scholar
  3. Atlas RM (1981) Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180–209.Google Scholar
  4. Bauchop T & Elsden SR (1960) The growth of microorganisms in relation to their energy. J. Gen. Microbiol. 23: 457–469.Google Scholar
  5. Bosch MP, Robert M, Mercadé ME, Espuny MJ, Parra JL & Guinea J (1988) Surface active compounds on microbial cultures. Tenside Surfactants Detergents 25 (4): 208–211.Google Scholar
  6. Broderick LS & Cooney JJ (1979) Emulsification of hydrocarbons by bacteria from freshwater ecosystems. Dev. Ind. Microbiol. 24: 425–434.Google Scholar
  7. Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation, 3: 351–368.Google Scholar
  8. Cooper DG & Zajic JE (1980) Surface active compounds from microorganisms. Appl. Microbiol. 26: 229–253.Google Scholar
  9. Cooper DG, MacDonald CR, Duff SJB & Kosaric N (1981) Enhanced production of Surfactin from Bacillus subtilis by continuous product removal and metal cation addition. Appl. Environ Microbiol. 42(3): 408–412.Google Scholar
  10. Cooper DG (1986) Biosurfactants. Microbiol. Sci. 3 (5): 145–149.Google Scholar
  11. Edward DA, Luthy RG & Liu Z (1991) Solubilization of polycyclic aromatic hydrocarbons in micellar nonionic surfactant solutions. Environ. Sci. Technol. 25 (1): 127–133.Google Scholar
  12. Francy DS, Thomas JM, Raymond RL & Ward CH (1991) Emulsification of hydrocarbons by subsurface bacteria. J. Ind. Microbiol. 8: 237–246.Google Scholar
  13. Gerson DF & Zajic JE (1978) Surfactant production from hydrocarbons by Corynebacterium lepus and Pseudomonas asphaltericus. Dev. Ind. Microbiol. 19: 577–599.Google Scholar
  14. Gerson DF & Zajic JE (1979) Microbial biosurfactants. Process Biochemistry 14(7): 20–29.Google Scholar
  15. Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds, Vol 13 (pp 181–242).Google Scholar
  16. Guerin WF & Jones GE (1988) Mineralization of phenanthrene by a Mycobacterium sp. Appl. Environ. Microbiol. 54(4): 937–944.Google Scholar
  17. Guerra-Santos L, Käppeli O & Fiechter A (1984) Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Environ. Microbiol. 48(2): 301–305.Google Scholar
  18. Guerra-Santos LH, Käppeli O & Fiechter A (1986) Dependence of Pseudomonas aeruginosa continuous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 24: 443–448.Google Scholar
  19. Gutnick DL & Shabtai Y (1987) Exopolysaccharide biopolymers. In: Kosaric N et al. (Ed) Biosurfactants and Biotechnology, Vol 25 (pp 211–246). Marcel Dekker Inc, New York.Google Scholar
  20. Haferburg D, Hommel R, Claus R & Kleber H (1986) Extracelluar microbial lipids as biosurfactants. Adv. Biochem. Eng/Biotechnol. 33: 53–93.Google Scholar
  21. Harayama S & Timmis KN (1989) Catabolism of aromatic hydrocarbons by Pseudomonas. In: Hopwood DD & Chater CF (Ed) Genitics of Bacterial Diversity (pp 151–171). Academic Press, Inc. London.Google Scholar
  22. Heitkamp MA & Cerniglia CE (1988a) Mineralization of polyaromatic hydrocarbons by a bacterium isolated from sediment below an oil field. Appl. Environ. Microbiol. 54(6): p 1612–1614.Google Scholar
  23. Heitkamp MA, Franklin W & Cerniglia CE (1988b) Microbial metabolism of polycyclic aromatic hydrocarbons: isolation and characterization of a pyrene-degrading bacterium. Appl. Environ. Microbiol. 54(10): 2549–2555.Google Scholar
  24. Heitkamp MA, Freeman JP, Miller DW & Cerniglia CE (1988c) Pyrene degradation by a Mycobacteriumsp.: identification of ring oxidation and ring fission products. Appl. Environ. Microbiol. 54(10): 2556–2565.Google Scholar
  25. Holm E, Jensen V (1972) Aerobic chemoorganotrophic bacteria of a Danish beech forest. Oikos 23: 248–260.Google Scholar
  26. Kiyohara H, Nagao K & Yana K (1982) Rapid Screen for bacteria degrading water-insoluble hydrocarbons on agar plates. Appl. Environ. Microbiol. 43: 454–457.Google Scholar
  27. Kosaric N, Gray NCC & Cairns WL (1983) Microbial emulsifiers and de-emulsifiers. In: Rehm HJ & Reed G (Ed) Biotechnology, Vol 3 (pp 576–592). Verlag Chemie, Dearfield Beach, Fl.Google Scholar
  28. Laha S & Luthy RG (1991) Inhibition of phenanthrene mineralization by nonionic surfactants in soil-water systems. Environ. Sci. Technol. 25(11): 1921–1930.Google Scholar
  29. Liu Z, Laha S & Richard GL (1991) Surfactant solubilization of polyaromatic hydrocarbons in soil-water suspensions. Wat. Sci. Technol. 23: 475–485.Google Scholar
  30. MacElwee C, Lee H & Trevors JT (1990) Production of extracelluar emulsifying agent by Pseudomonas aeruginosa UG1. J. Ind. Microbiol. 5: 25–32.Google Scholar
  31. Maniatis T, Fritsh EF & Sambrook J (1982) Molecular Cloning: A Laboratory Manual (pp 440). Coldspring Harbour Press. New York.Google Scholar
  32. Margaritis A, Kennedy K, Zajic JE & Gerson DF (1979) Biosurfactant production by Norcardia erythropolis. Dev. Ind. Microbiol. 20: 623–630.Google Scholar
  33. Mueller JG, Chapman PJ, Blattmann BO & Pritchard P (1990) Isolation and characterization of a fluoranthene-utilizing strain of Pseudomonas paucimobilis. Appl. Environ. Microbiol. 56(4): 1079–1086.Google Scholar
  34. Mueller JG, Lantz SE, Devereux R, Berg JD and Pritchard PH (1994) Studies on the microbial ecology of PAH biodegradation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (Eds) Bioremediation of Chlorinated and Polycyclic Aromatic Hydrocarbon Compounds (pp 218–238). Lewis Publishers, Boca Raton, FL.Google Scholar
  35. Parkinson M (1985) Bio-surfactants. Biotechnol. Adv. 3: 65–83.Google Scholar
  36. Pearlman RS, Yalkowsky SH & Banerjee S (1984) Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data, 13(2): 555–562.Google Scholar
  37. Rapp P, Bock H, Wray V & Wagner F (1979) Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 115: 491–503.Google Scholar
  38. Rock F & Alexander M (1995) Biodegradation of hydrophobic compounds in the presence of surfactants. Environ. Toxicol. Chem. 14 (7): 1151–1158.Google Scholar
  39. Sims RC & Overcach MR (1983) Polynuclears in soil- plant systems. Residue Review, 88: 1–68.Google Scholar
  40. Singer MEV & Finnery WR (1990) Physiology of biosurfactant synthesis by Rhodococcus species H13-A. Can. J. Microbiol. 36: 741–745.Google Scholar
  41. Tiehm A (1994) Degradation of polycyclic aromatic hydrocarbons in the presence of synthetic surfactants. Appl. Environ. Microbiol. 60(1): 258–263.Google Scholar
  42. VanDyke MI, Lee H & Trevors JT (1991) Applications of microbial surfactants. Biotech. Adv. 9: 241–252.Google Scholar
  43. Vigon BW & Rubin AJ (1989) Practical consideration in the surfactant-aided mobilization of contaminants in aquifers. J. Water Pollut. Control Fed. 61(7): 1233–1240.Google Scholar
  44. Volkering F, Breure AM, vanAndel JG & Rulkens WH (1995) Influence of nonionic surfactants on bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Appl. Environ. Microbiol. 61(5): 1699–1705.Google Scholar
  45. Wilson SC & Jones KJ (1993) Bioremediation of soil contaminanted with polynuclear aromatic hydrocarbons (PAHs): A review. Environ. Pollut. 81: 229–249.Google Scholar
  46. Zajic JE & Seffens W (1984) Biosurfactants. Crit. Rev. Biotechnol. 1 (2): 87–107.Google Scholar
  47. Zosim Z, Gutnick D & Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 Emulsan. Biotech. Bioeng. XXIV: 281–292.Google Scholar

Copyright information

© Kluwer Academic Publishers 1997

Authors and Affiliations

  • Pia A. Willumsen
    • 1
  • Ulrich Karlson
    • 1
  1. 1.Department of Marine Ecology and MicrobiologyNational Environmental Research InstituteRoskildeDenmark

Personalised recommendations