Earth, Moon, and Planets

, Volume 30, Issue 3, pp 209–228 | Cite as

Formation of the saturnian system: A modern Laplacian theory

  • A. J. R. Prentice
Article

Abstract

A theory for the formation of Saturn and its family of satellites, which is based on ideas of supersonic turbulent convection applied to the original Laplacian hypothesis, is presented. It is shown that if the primitive rotating cloud which gravitationally contracted to form Saturn possessed the same level of turbulent kinetic energy as the clouds which formed Jupiter and the Sun, given by % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaSqaaSqaai% aaigdaaeaacaaIYaaaaOGaaiikaiabeg8aYnaaBaaajea4baGaamiD% aaWcbeaakiaadAhadaqhaaqcKfaGaeaadaWgaaqcKjaGaeaacaWG0b% aabeaaaSqaaiaaikdaaaGccaGGPaGaeyypa0ZaaSqaaSqaaiaaigda% aeaacaaIYaaaaOGaeqOSdiMaeqyWdiNaam4raiaad2eacaGGOaGaam% OCaiaacMcacaGGVaGaamOCaaaa!4D3D!\[\tfrac{1}{2}(\rho _t v_{_t }^2 ) = \tfrac{1}{2}\beta \rho GM(r)/r\] where β=0.1065 ± 0.0015, then it would shed a concentric system of orbiting gas rings each of about the same mass: namely, 1.0 × 10−3MS. The orbital radii Rn(n = 0, 1, 2, ...) of these gas rings form a geometric sequence similar to the observed distances of the regular satellites. It is proposed that the satellites condensed from the gas rings one at a time, commencing with Iapetus which originally occupied a circular orbit at radius 11.4 RS. As the temperatures of the gas rings Tnincrease with decreasing orbital size according as Tn∫ 1/Rn, a uniform gradient should be evident amongst the satellite compositions: Mimas is expected to be the rockiest and Iapetus the least rocky satellite. The densities predicted by the model coincide with the Voyager-determined values. Iapetus contains some 8% by weight solid CH4. Titan is believed to be a captured satellite. It was probably responsible for driving Iapetus to its present distant orbit. Accretional time-scales and the post-accretional evolution of the satellites are briefly discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. D., Null, G. W., Biller, E. D., Wong, S. K., Hubbard, W. B., and MacFarlane, J. J.: 1980, Science 207, 449.Google Scholar
  2. Cohen, M.: 1981, Nature 291, 611.Google Scholar
  3. Consolmagno, G. J. and Lewis, J. S.: 1978, Icarus 34, 280.Google Scholar
  4. Cox, J. P. and Giuli, R. T.: 1968, Principles of Stellar Structure, Vol. 1. Gordon and Breach, New York.Google Scholar
  5. Davies, M. E. and Katayama, F. Y.: 1983, Icarus 53, 332.Google Scholar
  6. Delsemme, A. H. and Wenger, A.: 1970, Planetary Space Sci. 18, 709.Google Scholar
  7. Fouché, M.: 1884, Compt. Rend. Acad. Sci. 99, 903.Google Scholar
  8. Gautier, D., Conrath, B. J., Flasar, F. M., Hanel, R. A., and Kunde, V. G.: 1981, J. Geophys. Res. 86, 8713.Google Scholar
  9. Grossman, A. S., Pollack, J. B., Reynolds, R. T., Summers, A. L., and Graboske, H. C.: 1980, Icarus 42, 358.Google Scholar
  10. Haudenschild, C.: 1971, JPL Space Programs Summary 37–64, Vol. III, pp. 4–9. Jet Propulsion Laboratory, Pasadena.Google Scholar
  11. Herbig, G. H.: 1962, Advances in Astron. Astrophys. 1, 47.Google Scholar
  12. Hourigan, K.: 1977, Proc. Astron. Soc. Australia 3, 169.Google Scholar
  13. Hourigan, K.: 1981a, Proc. Astron. Soc. Australia 4, 226.Google Scholar
  14. Hourigan, K.: 1981b, Ph.D. Thesis, Monash University (Clayton, Victoria).Google Scholar
  15. Hourigan, K. and Prentice, A. J. R.: 1979, Proc. Astron. Soc. Australia 3, 389.Google Scholar
  16. Hoyle, F.: 1960, Quart. J. Roy. Astron. Soc. 1, 28.Google Scholar
  17. Hubbard, W. B. and MacFarlane, J. J.: 1980, J. Geophys. Res. 85, 225.Google Scholar
  18. Jeans, J. H.: 1928, Astronomy and Cosmogony, Cambridge University Press, Cambridge.Google Scholar
  19. Kozai, Y.: 1976, Publ. Astron. Soc. Japan 28, 675.Google Scholar
  20. Lambert, D. L.: 1978, Monthly Notices Roy. Astron. Soc. 182, 249.Google Scholar
  21. Lambert, D. L. and Luck, R. E.: 1978, Monthly Notices Roy. Astron. Soc. 183, 79.Google Scholar
  22. Laplace, P. S. de: 1796, Exposition du Systéme du Monde, Courcier, Paris.Google Scholar
  23. Lewis, J. S.: 1972, Icarus 16, 241.Google Scholar
  24. Lewis, J. S.: 1974, Science 186, 440.Google Scholar
  25. Lupo, M. J.: 1982, Icarus 52, 40.Google Scholar
  26. Lupo, M. J. and Lewis, J. S.: 1979, Icarus 40, 157.Google Scholar
  27. Lupo, M. J. and Lewis, J. S.: 1980, Icarus 42, 29.Google Scholar
  28. Miller, S. L.: 1961, Proc. Nat. Acad. Science 47, 1798.Google Scholar
  29. Pollack, J. B., Grossman, A. S., Moore, R., and Graboske, H. C.: 1976, Icarus 29, 35.Google Scholar
  30. Pollack, J. B., Burns, J. A., and Tauber, M. E.: 1979, Icarus 37, 587.Google Scholar
  31. Prentice, A. J. R.: 1973, Astron. Astrophys. 27, 237.Google Scholar
  32. Prentice, A. J. R.: 1974, in In the Beginning ..., J. P. Wild (ed.), Australian Academy of Science, Canberra, pp. 15–47.Google Scholar
  33. Prentice, A. J. R.: 1976, Astron. Astrophys. 50, 59.Google Scholar
  34. Prentice, A. J. R.: 1978a, in The Origin of the Solar System S. F. Dermott (ed.), John Wiley & Sons, London, pp. 111–162.Google Scholar
  35. Prentice, A. J. R.: 1978b, The Moon and the Planets 19, 341.Google Scholar
  36. Prentice, A. J. R.: 1980a, JPL Publication 80–80, Jet Propulsion Laboratory, Pasadena.Google Scholar
  37. Prentice, A. J. R.: 1980b, Phys. Lett. 80A, 205.Google Scholar
  38. Prentice, A. J. R.: 1980c, Australian J. Phys. 33, 623.Google Scholar
  39. Prentice, A. J. R.: 1981a, JPL Publication 81–79, Jet Propulsion Laboratory, Pasadena.Google Scholar
  40. Prentice, A. J. R.: 1981b, Proc. Astron. Soc. Australia 4, 164.Google Scholar
  41. Prentice, A. J. R.: 1981c, Bull. Amer. Astron. Soc. 13, 743.Google Scholar
  42. Prentice, A. J. R.: 1983, Australian Physicist 20, 37.Google Scholar
  43. Prentice, A. J. R. and ter Haar, D.: 1979a, The Moon and the Planets 21, 43.Google Scholar
  44. Prentice, A. J. R. and ter Haar, D.: 1979b, Nature 280, 300.Google Scholar
  45. Ransford, G. A., Finnerty, A. A., and Collerson, K. D.: 1981, Nature 289, 21.Google Scholar
  46. Ross, J. E. and Aller, L. H.: 1976, Science 191, 1223.Google Scholar
  47. Slattery, W.: 1977, Icarus 32, 58.Google Scholar
  48. Smith, B. A. et al.: 1981, Science 212, 169.Google Scholar
  49. Smith, B. A. et al.: 1982, Science 215, 504.Google Scholar
  50. Stewart, J. W.: 1960, J. Chem. Phys. 33, 128.Google Scholar
  51. Stone, E. C. and Miner, E. D.: 1982, Science 215, 499.Google Scholar
  52. ter Haar, D.: 1967, Ann. Rev. Astron. Astrophys. 5, 267.Google Scholar
  53. Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E., and Croft, T. A.: 1981, Science 212, 201.Google Scholar
  54. Tyler, G. L., Eshleman, V. R., Anderson, J. D., Levy, G. S., Lindal, G. F., Wood, G. E., and Croft, T. A.: 1982, Science 215, 553.Google Scholar
  55. Ward, W. R.: 1981, Icarus 46, 97.Google Scholar
  56. Williams, I. P. and Crampin, D. J.: 1971, Monthly Notices Roy. Astron. Soc. 152, 261.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • A. J. R. Prentice
    • 1
  1. 1.Department of MathematicsMonash UniversityClaytonAustralia

Personalised recommendations