Computers and the Humanities

, Volume 23, Issue 3, pp 215–225 | Cite as

Unrooted trees revisited: Topology and poetic data

  • M. Juillard
  • N. X. Luong


Scholars in the humanities often have to account exhaustively for the structure of large masses of data. Tree-diagrams implemented by means of suitable computer programs can be of considerable assistance in achieving a cohesive representation of the data. This paper discusses the respective merits of the two main approaches to tree representation and introduces a new method based on the use of unrooted trees. After a detailed examination of the topological properties of such trees, two algorithms are described. The second part of the paper consists in practical applications of the method of tree representation to a corpus of contemporary English poetry. Several sets of data made up of both lexical and grammatical items (adjectives, modals, auxiliaries and personal pronouns) have been submitted to the method. The findings are assessed in terms of their heuristic value in the light of modern linguistic theory and compared with the results obtained by means of more traditional statistical procedures.

N. X. Luong is a doctor of Sciences and a lecturer at the University of Nice. He is conducting research on algorithms in the field of discrete mathematics. He has, among other things, created several algorithms for the representation of data in the form of non-hierarchic trees.

Key Words

tree-analysis additive trees tree-topology tree-representation algorithms computational linguistics English syntax English poetry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barthélemy, J. P. and N. X. Luong. “Représentations arborées des mesures de dissimilarités.” Statistique et Analyse des Données 11, 1 (1986), 20–41.Google Scholar
  2. Benveniste, E. Problèmes de linguistique générale. 2 vols. Paris: Gallimard, 1966, 1974.Google Scholar
  3. Benzécri, J. P. L'analyse des données. 2 vols. Paris: Dunod, 1973.Google Scholar
  4. Buneman, P. “The Recovery of Trees from Measures of Dissimilarity.” In Mathematics in Archeological and Historical Sciences. Ed. F. R. Hodson, D. G. Kendall, and P. Tautu. Edinburgh: University Press, 1971, 387–95.Google Scholar
  5. Buneman, P. “A Note on Metric Properties of Trees.” Journal Comb. Theory (B), 17 (1974), pp. 48–50.Google Scholar
  6. Colonius, H. and H. H. Schulze. “Tree Structure for Proximity Data.” British Journal of Mathematical and Statistical Psychology, 34 (1981), 167–80.Google Scholar
  7. Day, W. H. E. Analysis of Quartet Dissimilarity Measures Between Undirected Phylogenetic Trees. Technical report, Université de Montréal, (no date).Google Scholar
  8. Day Lewis, C. Collected Poems. London: J. Cape and The Hogarth Press, 1954.Google Scholar
  9. Dobson, A. J. “Unrooted Trees for Numerical Taxonomy.” Journal of Applied Probabilities, 11 (1974), 32–42.Google Scholar
  10. Estabrook, G. F. and C. Meacham. “How to Determine the Compatibility of Undirected Character State Trees.” Mathematical Biosciences, 46 (1979), 251–56.Google Scholar
  11. Estabrook, G. F., F. R. McMorris, and C. Meacham. “Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units.” Systematic Zoology, 22, 1 (1985), 193–200.Google Scholar
  12. Farris, J. S. “On Comparing the Shape of Taxonomic Trees.” Systematic Zoology, 22, 1 (1973), 50–54.Google Scholar
  13. Halliday, M. A. K. An Introduction to Functional Grammar. London: Arnold, 1985.Google Scholar
  14. Juillard, M. L'expression poétique chez Cecil Day Lewis, vocabulaire, syntaxe, métaphore. Etude stylostatistique. Geneve: Slatkine, 1983.Google Scholar
  15. Juillard, M. “A Quantitative Approach to Semantic and Morphosemantic Fields in a Literary Work.” ALLC Journal, 1 and 2 (1985), 14–23.Google Scholar
  16. Juillard, M. “Linguistique et linguistique quantitative.” In Proceedings of the XIIIth ALLC International Conference Norwich. Geneve: Slatkine, 1988.Google Scholar
  17. Luong, N. X. “Voisinage lâche, score et famille scorante.” Cahiers du S.U.R.F., 2, Université de Besançon.Google Scholar
  18. Luong, N. X. Méthodes d'analyse arborée. Algorithmes, applications. Doctorat d'Etat dissertation, Université de Paris V, 1988.Google Scholar
  19. McMorris, F. R. “Axioms for Consensus Functions on Undirected Phylogenetic Trees.” Mathematical Biosciences, 74 (1985), 17–21.Google Scholar
  20. Patrinos, A. N. and S. L. Hakimi. “The Distance Matrix of a Graph and its Tree Realization.” Quarterly Applied Mathematics (1972), 255–69.Google Scholar
  21. Phipps, J. P. ”Dendrogram Topology.” Systematic Zoology, 20, 3 (1971), 306–08.Google Scholar
  22. Sattath, S. and A. Tversky. “Additive Similarity Tree.” Psychometrika, 42, 3 (1977), 319–45.Google Scholar
  23. Waterman, M. S. and T. F. Smith. “On the Similarity of Dendrograms.” Journal of Theoretical Biology, 73 (1978), 369–81.Google Scholar
  24. Wittgenstein, L. Philosophische Untersuchungen. Oxford: Blackwell, 1953.Google Scholar
  25. Zaretskii, K. “Constructing a Tree on the Basis of a Set of Distances Between Hanging Vertices.” Upekki Math. Nauk., 20 (1965), 90–2. (In Russian.)Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • M. Juillard
    • 1
  • N. X. Luong
    • 2
  1. 1.Département d'anglais & CNRS, URL9Université de NiceNice CedexFrance
  2. 2.Institut National de la Langue Française et Laboratoire d'Informatique del'Université de NiceNice CedexFrance

Personalised recommendations