Computers and the Humanities

, Volume 23, Issue 3, pp 199–214 | Cite as

The identification and modelling of a percussion ‘language,’ and the Emergence of Musical Concepts in a machine-learning experimental set-up

  • Jim Kippen
  • Bernard Bel


In experimental research into percussion ‘languages’, an interactive computer system, the Bol Processor, has been developed by the authors to analyse the performances of expert musicians and generate its own musical items that were assessed for quality and accuracy by the informants. The problem of transferring knowledge from a human expert to a machine in this context is the focus of this paper. A prototypical grammatical inferencer named QAVAID (Question Answer Validated Analytical Inference Device, an acronym also meaning ‘grammar’ in Arabic/Urdu) is described and its operation in a real experimental situation is demonstrated. The paper concludes on the nature of the knowledge acquired and the scope and limitations of a cognitive-computational approach to music.

Bernard Bel is an electronics and computer engineer. A founder member of the International Society for Traditional Arts Research (ISTAR) he has for many years collaborated with ethnomusicologists and musicians on projects aimed at a scientific study of North Indian melodic and rhythmic systems. In 1981 he designed and constructed an accurate melodic movement analyser, and he subsequently developed software for the analysis of raga intonation. He went on to develop software for rhythmic analysis/synthesis in collaboration with Jim Kippen. Bernard Bel is now a member of the Groupe Représentation et Traitement des Connaissances, an AI laboratory at the CNRS, Marseille.

Key Words

formal grammars stochastic automata language identification inductive learning drumming cognition dialectical anthropology ethnomusicology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andler, D. “L'apprentissage dans les sciences cognitives: approches théoriques.” Intellectica: Apprentissage et Machine, 1 (1987), 213–34.Google Scholar
  2. Baroni, M., R. Dalmonte, and C. Jacoboni. “Relationships between Music and Poetry in the Arias of Giovanni Legrenzi.” Unpublished paper, 1987.Google Scholar
  3. Barr, A. “Artificial Intelligence: Cognition as Computation.” In The Study of Information: Interdisciplinary Messages. Ed. F. Machlup and V. Mansfield. New York: J. Wiley, 1983, pp. 237–62.Google Scholar
  4. Bel, B. Grammaires de langages rythmiques. Mémoire de D.E.A. de Mathematiques et Informatique, G.I.A, Faculté des Sciences de Luminy, Université Marseille II, 1987a.Google Scholar
  5. Bel, B. Les Grmmaires et le moteur d'inférences du Bol Processor. Marseille: Note GRTC n° 237, Centre National de la Recherche Scientifique, 1987b.Google Scholar
  6. Bel, B. “Grammaires de génération et de reconnaissance de phrases rythmiques.” Reconnaissance des Formes et Intelligence Artificielle. Antibes: 6ème Congrès A.F.C.E.T, 1987c, pp. 353–66.Google Scholar
  7. Bel, B. Mise en oeuvre dun algorithme d'inférence d'automate probabiliste. Marseille: Note GRTC n° 303, Centre National de la Recherche Scientifique, 1988a.Google Scholar
  8. Bel, B. Designing Tools for Knowedge Representation in the Anthropological Study of a Musical System. Marseille: Note GRTC n° 312, Centre National de la Recherche Scientifique, 1988b.Google Scholar
  9. Bel, B. and J. Kippen. “Un modèle d'inférence grammaticale appliquée a l'apprentissage a partir d'exemples musicaux.” Neurosciences et Sciences de l'Ingénieur. Marseille: Centre International de Rencontres Mathématiques, Université de Luminy, 1988.Google Scholar
  10. Blum, L. and M. Blum. “Toward a Mathematical Theory of Inductive Inference.” Information and Control, 28, (1975), 125–55.Google Scholar
  11. Booth, T. L. and R. A. Thompson. “Applying Probability Measures to Abstract Languages.” IEEE Transactions on Computers, C-22, n° 5 (1973), 442–50.Google Scholar
  12. Boucheron, S. and J. Sallantin. “Apprenabilité et complexité.” Journées Françaises de l'Apprentissage, Cassis: 1988, pp. 21–37.Google Scholar
  13. Dietterich, T. G. and R. S. Michalski. “Learning to Predict Sequences.” In Machine Learning: An Artificial Intelligence Approach. Vol. 2. Ed. R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Los Altos: Morgan Kaufmann, 1986, pp. 63–106.Google Scholar
  14. Fu, K. S. and T. L. Booth. “Grammatical Inference: Introduction and Survey — Part I.” IEEE Transactions on Systems, Man and Cybernetics, SMC-5, 1 (1975a), 95–111.Google Scholar
  15. Fu, K. S. and T. L. Booth. ”Grammatical Inference: Introduction and Survey — Part II.” IEEE Transactions on Systems, Man and Cybernetics, SMC-5, 4 (1975b), 409–23.Google Scholar
  16. Gold, E. M. “Language Identification in the Limit.” Information and Control, 10 (1967), 447–74.Google Scholar
  17. Gottlieb, R. S. The Major Traditions of North Indian Tabla Drumming. Vol. 1. Munich: Katzbichler, 1977.Google Scholar
  18. Hofstadter, D. R. Metamagical Themas: Questing for the Essence of Mind and Pattern. New York: Basic Books, 1985.Google Scholar
  19. Jackendoff, R. and F. Lerdahl. “A Grammatical Parallel between Music and Language.” In Music, Mind and Brain: The Neuropsychology of Music. Ed. M. Clynes. New York: Plenum Press, 1982, pp. 83–117.Google Scholar
  20. Jackendoff, R. and F. Lerdahl. A Generative Theory of Tonal Music. Cambridge, MA: MIT Press, 1983.Google Scholar
  21. Kain, R. Automata Theory: Machines and Languages. Malabar: Krieger Publishing Company, 1981.Google Scholar
  22. Kippen, J. “An Ethnomusicological Approach to the Analysis of Musical Cognition.” Music Perception, 5 (1987), 173–95.Google Scholar
  23. Kippen, J. The Tabla of Lucknow: A Cultural Analysis of a Musical Tradition. Cambridge: Cambridge University Press, 1988a.Google Scholar
  24. Kippen, J. “Computers, Fieldwork, and the Problem of Ethnomusicological Analysis.” International Council for Traditional Music (UK Chapter) Bulletin, 20 (1988b), 20–35.Google Scholar
  25. Kippen, J. and B. Bel. “Can a Computer Help Resolve the Problem of Ethnographic Description?” Marseille: Note GRTC n° 319, Centre National de la Recherche Scientifique, 1988.Google Scholar
  26. Kippen, J. and B. Bel. “Modelling Music with Grammars: Formal Language Representation in the Bol Processor.” Forthcoming in Computer Representations and Models in Music. Ed. A. Marsden and A. Pople. London: Academic Press, 1989.Google Scholar
  27. Maryanski, F. J. and T. L. Booth. “Inference of Finite-State Probabilistic Grammars.” IEEE Transactions on Computers, C-26, 6 (1977), 521–36.[Some anomalies of this paper are corrected in Gaine, B. R. “Maryanski's Grammatical Inferencer.” IEEE Transactions on Computers, C-27,1 (1979),62–64.]Google Scholar
  28. Michalski, R. S. “A Theory and Methodology of Inductive Learning.” In Machine Learning: An Artificial Intelligence Approach. Vol. 1. Ed. R. S. Michalski, J. G. Carbonell and T. M. Mitchell. Los Altos: Morgan Kaufmann, 1983, pp. 83–134.Google Scholar
  29. Osherson, D. N., M. Stob, and S. Weinstein. Systems That Learn. Cambridge, MA: MIT Press, 1986.Google Scholar
  30. Révész, G. E. Introduction to Formal Languages. New York: McGraw-Hill, 1985.Google Scholar
  31. Sharma, B. Taal prakaash. (In Hindi.). 7th ed. Hathras: Sangeet Karyalaya, 1981.Google Scholar
  32. Siromoney, G. and A. Huq. “Segmentation of Indus Texts: A Dynamic Programming Approach.” Computers and the Humanities, 22 (1988), 11–21.Google Scholar
  33. Valiant, L. G. “A Theory of the Learnable.” Communications of the Association for Computing Machinery, 27, 11 (1984), 1134–42.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Jim Kippen
    • 1
  • Bernard Bel
    • 1
  1. 1.Dept. Social Anthropology and Ethnomusicology Queen's UniversityBelfastNorthern Ireland

Personalised recommendations