Skip to main content
Log in

The effect of metals and alcohol on sexual isolation in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Strong sexual isolation established between D. melanogaster long-term cage populations (originated from common parents and being under selection pressure since 1972) is maintained (with a tendency to increase) for twelve years after the origin of the populations. The sexual isolation is also maintained when the populations are kept in common conditions for about two years, while it dramatically decreases when the populations live on a food medium supplemented with strong chemical selective factors, such as various metals or ethanol. Seasonal or geographical studies of sexual isolation between natural and our cage populations did not reveal significant deviation from random matings. The genetic nature of sexual isolation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alahiotis, S., 1976. Genetic variation and the ecological parameter ‘food medium’ in cage populations of Drosophila melanogaster. Can. J. Genet. Cytol. 18: 379–383.

    Google Scholar 

  • Alahiotis, S., 1983. Heat shock proteins. A new view on the temperature compensation. Invit. minireview for Comp. Biochem. and Physiol. 75B: 379–387.

    Google Scholar 

  • Alahiotis, S & Pelecanos, M., 1978. Induction of gene pool differentiation in D.melanogaster. Can. J. Genet. Cytol. 20: 265–273.

    Google Scholar 

  • Alahiotis, S. & Pelecanos, M., 1980. The effect of the environmental parameters temperature and humidity upon the variability of the gene pool in D.melanogaster. Genetika 12: 209–217.

    Google Scholar 

  • Alahiotis, S. & Stephanou, G., 1982. Temperature adaptation of Drosophila populations. The heat shock proteins system. Comp. Biochem. Physiol. 79: 529–533.

    Google Scholar 

  • Alahiotis, S., Pelecanos, M. & Zacharopoulou, A., 1976. A contribution to the study of linkage disequilibrium in D.melanogaster. Can. J. Genet. Cytol. 18: 739–745.

    Google Scholar 

  • Alahiotis, S., Zacharopoulou, A. & Pelecanos, M., 1979. The effect of two ecological factors upon the inversion frequencies in D.melanogaster cage populations. Dros. Inform. Serv. 52.

  • Anderson, S. M., McDonald, J. E. & Santos, M., 1981. Selection at the Adh locus in Drosophila melanogaster: Adult survivor-shipmortality in response to ethanol. Experientia 37: 463–464.

    Google Scholar 

  • Christie, N. T., Paton, C. L., Smith, L. H., Witschi, H. R. & Lee, E. H., 1982. Chemical softness and acute metal toxicity in mice and Drosophila. Toxicol. appl. Pharmacol. 63: 461–475.

    Google Scholar 

  • Christie, N. T., Williams, M. N. & Jacobson, K. B., 1985. Genetic and physiological parameters associated with cadmium toxicity in Drosophila melanogaster. Biochem. Genet. 23: 571–583.

    Google Scholar 

  • David, J. R., Van, Herrewege, J., Monelus, M. & Prevosti, A., 1979. High ethanol tolerance in two distantly related Drosophila species: a probable case of recent convergent adaptation. Comp. Biochem. Physiol. 63C: 53–56.

    Google Scholar 

  • Dodd, D. M. B. & Powell, J. R., 1985. Founder-flush speciation: an update of experimental results with Drosophila. Evolution 39: 1388–1392.

    Google Scholar 

  • Elens, A. A. & Wattiaux, J. M., 1964. Direct observation of sexual isolation. Dros. Inf. Serv. 39: 118–119.

    Google Scholar 

  • Harsanyi, Z., Granek, I. A. & MacKenzie, D. M., 1977. Genetic damage induced by ethyl alcohol in Aspergillus nidulans. Mutation Res. 48: 51–74.

    Google Scholar 

  • Henderson, N. R. & Lambert, D. M., 1982. No significant deviation from random mating of worldwide populations of Drosophila melanogaster. Nature 300: 437–440.

    Google Scholar 

  • Hougouto, N., Lietaert, M. C., Libion-Mannaert, M., Flytmanns, E. & Elens, A., 1982. Oviposition-site preference and ADH activity in Drosophila melanogaster. Genetica 58: 121–128.

    Google Scholar 

  • Jones, M. M. & Vaughn, W. K., 1978. HSAB theory and acute metal ion toxicity and detoxification processes. J. inorg. Nucl. Chem. 40: 2081–2092.

    Google Scholar 

  • Kilias, G. & Alahiotis, S. N., 1982. Genetic studies on sexual isolation and hybrid sterility in long-term cage populations of Drosophila melanogaster. Evolution 36(1): 121–131.

    Google Scholar 

  • Kilias, G., Alahiotis, S. N. & Onoufriou, A., 1979. The alcohol dehydrogenase locus affects meiotic crossing-over in Drosophila melanogaster. Genetica 50: 173–177.

    Google Scholar 

  • Kilias, G., Alahiotis, S. N. & Pelecanos, M., 1980. A multifactorial genetic investigation of speciation theory using Drosophila melanogaster. Evolution 34(4): 730–737.

    Google Scholar 

  • Libion-Mannaert, M., Delcour, J., Deltombe-Lietaert, M. C., Lenelle-Montfort, N. & Elens, A., 1976. Ethanol as a ‘food’ for Drosophila melanogaster: influence of the ebony gene. Experientia 32: 22–23.

    Google Scholar 

  • Malogolowkin-Cohen, Ch., Simons, A. S. & Lovene, H., 1965. A study of sexual isolation between certain strains of Drosophila paulistorum. Evolution 19: 95–103.

    Google Scholar 

  • Maroni, G., Lastowski-Perry, D., Otto, E. & Watson, D., 1986. Effects of heavy metals on Drosophila larvae and a metallothlonein cDNA. Environm. Health Perspect. 65: 107–116.

    Google Scholar 

  • Mayr, E, 1963. Animal species and evolution. Belknap Press, Harvard.

    Google Scholar 

  • Moxon, L., Homes, R. & Parsons, P., 1982. Comparative studies of aldehyde oxidase, alcohol dehydrogenase and aldehyde resource utilization among australian Drosophila species. Comp. Biochem. Physiol. 71B: 387–395.

    Google Scholar 

  • Nei, M., 1975. Molecular population genetics and evolution. North-Holland Publ. Co., Amsterdam-Oxford.

    Google Scholar 

  • Nevo, E., 1983. Adaptive significance of protein variation. In ‘Protein Polymorphism: Adaptive and Taxonomic significance’ edited by G. S. Oxford and D. Rollinso, Academic Press.

  • Nevo, E., Ben-Shlomo, R. & Lavie, B., 1984. Mercury selection of allozymes in marine organisms: prediction and verification in nature. Proc. natn. Acad. Sci. USA 81: 1258–1259.

    Google Scholar 

  • Nevo, E., Lavie, B. & Ben-Shlomo, R., 1983. Selection of allelic isozyme polymorphisms in marine organisms: pattern, theory and application. In: Isozymes: Current topics in Biological and medical research. Vol. 10: Genetics and Evolution 69–92 (Alan Liss Inc. N.Y.).

    Google Scholar 

  • Petit, C., Kitagawa, O. & Takamura, T., 1976. Mating system between japanese and french geographic strains of Drosophila melanogaster. Japan. J. Genet. 51: 99–108.

    Google Scholar 

  • Tauber, C., Tauber, M. & Nichols, J., 1977. Two genes control seasonal isolation in sibling species. Science 197: 592–593.

    Google Scholar 

  • Varnavas, S., Ferentinos, G. & Collins, M., 1986. Dispersion of Bauxitic red mud in the gulf of Corinth, Creece. Marine Geology. (In press).

  • Williams M. W., Hoeschele J. D., Turner J. F., Jacobson K. B.,

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kilias, G., Alahiotis, S.N. The effect of metals and alcohol on sexual isolation in Drosophila melanogaster . Genetica 75, 31–37 (1987). https://doi.org/10.1007/BF00056030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00056030

Keywords

Navigation