Skip to main content
Log in

Fluorescence banding in four species of Microtidae: an analysis of the evolutive changes of the constitutive heterochromatin

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Three different fluorochrome and specific counterstain combination (DAPI/AMD, DA/DAPI and CMA/DA) treatments were applied to the chromosomes of four Microtidae (Rodentia) species. The results complete the data obtained in our previous paper (Burgos, M., Jiménez, R., & Dìaz de la Guardia, R., Genome 30:540–546, 1988) and prove that the changes in the constitutive heterochromatin in the evolution of the karyotypes of these species are not only due to gain or loss of heterochromatin, but are qualitative with respect to their nucleotide composition, repeated base pair organization or DNA-protein complex modification. These variations lead to the differential response to the fluorescence dye combinations used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bogenberger, J.M., Neitzel, H. & Fitter, F., 1987. A higly repetitive DNA component common to all Cervidae: its organization and chromosomal distribution during evolution. Chromosoma 95: 154–161.

    Google Scholar 

  • Burgos, M., Jiménez, R. & Díaz de la Guardia, R., 1986. A rapid, simple and reliable combined method for G-banding mammalian and human chromosomes. Stain Technol. 61: 257–250.

    Google Scholar 

  • Burgos, M., Jiménez, R. & Díaz de la Guardia, R., 1988a. Comparative study of G- and C-banded chromosomes of five species of Microtidae: a chromosomal evolution analysis. Genome 30: 540–546.

    Google Scholar 

  • Burgos, M., Jiménez, R., Olmos, D. M. & Díaz de la Guardia, R., 1988b. Heterogeneous heterochromatin and size variation in the sex chromosomes of Microtus cabrerae. Cytogenet. Cell Genet. 47: 75–79.

    Google Scholar 

  • Gadi, I.K. & Ryder, O.A., 1983. Molecular cytogenetics of the Equidae. II. Purification and cytological localization of a (G+C)-rich satellite DNA from Equus hemionus onager and cross-species hybridization to E. asinus chromosomes. Cytogenet. Cell Genet. 35: 124–130.

    Google Scholar 

  • John, B., King, M., Schweizer, D. & Mendelak, M., 1985. Equilocality of heterochromatin distribution and heterochromatin heterogeneity in acridid grasshoppers. Chromosoma 91: 185–200.

    Google Scholar 

  • Mayr, B., Krutzler, J., Auer, H., Kalat, M. & Schleger, W., 1987. NORs, heterochromatin, and R-bands in three species of Cervidae. J. Hered. 78 (2): 108–110.

    Google Scholar 

  • Mayr, B. Schweizer, D., Mendelak, M., Krutzler, J., Schleger, W., Kalat, M. & Auer, H., 1985. Levels of conservation and variation of heterochromatin and nucleolus organizers in the Bovidae. Can. J. Genet. Cytol. 27: 665–682.

    Google Scholar 

  • Miller, O.J., Schnedl, W., Allen, J. & Erlanger, B.F., 1974. 5-methylcytosine localised mammalian constitutive heterochromatin. Nature 251: 636–637.

    Google Scholar 

  • Scherthan, H., Arnason, U. & Lima-de-Faria, A., 1987. The chromosome field theory tested in muntjac species by DNA cloning and hybridization. Hereditas 107: 175–184.

    Google Scholar 

  • Schnedl, W., Abraham, R., Förster, M. & Schweizer, D., 1981. Differential fluorescent staining of porcine heterochromatin by chromomycin A3/distamicin A/DAPI and D 287/170. Cytogenet. Cell Genet. 31: 249–253.

    Google Scholar 

  • Schnedl, W., Dann, O. & Schweizer, D., 1980. Effects of counterstaining with DNA binding drugs on fluorescent banding pattern of human and mammalian chromosomes. Eur. J. Cell Biol. 20: 290–296.

    Google Scholar 

  • Schnedl, W., Dev, V. G., Tantravahi, R., Miller, D. A., Erlanger, B. F. & Miller, O. J., 1975. 5-methylcytosine in heterochromatic regions of chromosomes: chimpanzee and gorilla compared to the human. Chromosoma 52: 59–66.

    Google Scholar 

  • Schweizer, D., 1981. Counterstain enhanced chromosome banding. Hum. Genet. 57: 1–14.

    Google Scholar 

  • Schweizer, D., Ambros, P. & Andrle, M., 1978. Modification of DAPI banding on human chromosomes by prestaining with DNA binding oligopeptide antibiotic, distamycin A. Expl Cell Res. 111: 327–332.

    Google Scholar 

  • Schweizer, D., Ambros, P., Andrle, M., Rett, A. & Fiedler, W., 1979. Demonstration of specific heterochromatic segments in the orangutan (Pongo pigmaeus) by a distamycin/DAPI double staining technique. Cytogenet. Cell Genet. 24: 7–14.

    Google Scholar 

  • Sen, S. & Sharma, T., 1983. Role of constitutive heterochromatin in evolutionary divergence: results of chromosome banding and condensation inhibition studies in Mus musculus, Mus booduga and Mus dunni. Evolution 37: 628–636.

    Google Scholar 

  • Sumner, A. T., 1972. A simple technique for demonstrating centromeric heterochromatin Expl Cell Res. 75: 304–306.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgos, M., Olmos, D.M., Jiménez, R. et al. Fluorescence banding in four species of Microtidae: an analysis of the evolutive changes of the constitutive heterochromatin. Genetica 81, 11–16 (1990). https://doi.org/10.1007/BF00055231

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00055231

Keywords

Navigation