Skip to main content

Computing motion using analog VLSI vision chips: An experimental comparison among different approaches


We have designed, built and tested a number of analog CMOS VLSI circuits for computing 1-D motion from the time-varying intensity values provided by an array of on-chip phototransistors. We present experimental data for two such circuits and discuss their relative performance. One circuit approximates the correlation model while a second chip uses resistive grids to compute zero-crossings to be tracked over time by a separate digital processor. Both circuits integrate image acquisition with image processing functions and compute velocity in real time. For comparison, we also describe the performance of a simple motion algorithm using off-the-shelf digital components. We conclude that analog circuits implementing various correlation-like motion algorithms are more robust than our previous analog circuits implementing gradient-like motion algorithms.

This is a preview of subscription content, access via your institution.


  1. 1.

    E.H., Adelson and J.R., Bergen, Spatio-temporal energy models for the perception of motion, J. Opt. Soc. Amer. A 2:284–299, 1985.

    Google Scholar 

  2. 2.

    W., Bair and C., Koch, An analog VLSI chip for finding edges from zero-crossings. In Advances in Neural Information Processing Systems, vol. 3, R., Lippman, J., Moody, and D.S., Touretzky, eds., Morgan Kaufmann, San Mateo, CA, pp. 399–405, 1991.

    Google Scholar 

  3. 3.

    H.H., Bülthoff, J.J., Little, and T., Poggio, Parallel computation of motion: computation, psychophysics and physiology, Nature 337:549–553, 1989.

    Google Scholar 

  4. 4.

    T., Delbrück and C., Mead, An electronic photoreceptor sensitive to small changes in Intensity. In Neural Information Processing Systems 1, D., Touretzky, ed., Morgan Kaufmann, San Mateo, CA, pp. 720–727, 1989.

    Google Scholar 

  5. 5.

    M., Egelhaaf, A., Borst, and W., Reichardt, The computational structure of a biological motion detection system”, J. Opt. Soc. Amer. 6:1070–1087, 1989.

    Google Scholar 

  6. 6.

    C.L., Fennema and W.B., Thompson, Velocity determination in scenes containing several moving objects, Comp. Graph. Image Process. 9:301–315, 1979.

    Google Scholar 

  7. 7.

    N.M., Grzywacz and A.L., Yuille, A model for the estimate of local image velocity by cells in the visual cortex, Proc. Roy. Soc. London B 239:129–161, 1990.

    Google Scholar 

  8. 8.

    B., Hassenstein and W., Reichardt, Systemtheoretische Analyse der Zeit, Reihenfolgen, and Vorzeichenauswertung bei der Bewegungsperzepion des Rüsselkäfers. Chlorophanus, Z. Naturforsch. 11b:513–524, 1956.

    Google Scholar 

  9. 9.

    E.C., Hildreth, The measurement of visual motion, MIT Press: Cambridge, MA, 1984.

    Google Scholar 

  10. 10.

    E., Hildreth and C., Koch, The analysis of visual motion: from computational theory to neuronal mechanisms”, Annu. Rev. Neurosci. 10:477–533, 1987.

    Google Scholar 

  11. 11.

    T., Horiuchi, J., Lazzaro, A., Moore, and C., Koch, A delay-line based motion detection chip. In Advances in Neural Information Processing Systems, vol. 3, R., Lippman, J., Moody, and D., Touretzky, eds., pp. 406–412, Morgan Kaufmann, San Mateo, CA, 1991.

    Google Scholar 

  12. 12.

    B.K.P., Horn, Robot Vision, MIT Press: Cambridge, MA 1986.

    Google Scholar 

  13. 13.

    B.K.P., Horn, Parallel networks for machine vision, Artif. Intell. Lab. Memo no. 1071, MIT, Cambridge, 1989.

    Google Scholar 

  14. 14.

    B.K.P., Horn and G., Schunck, Determining optical flow, Artif. Intell. 17:185–203, 1981.

    Google Scholar 

  15. 15.

    C., Koch, Seeing chips: analog VLSI circuits for computer vision, Neural Comput. 1:184–200, 1989.

    Google Scholar 

  16. 16.

    C. Koch, H.T. Wang, B. Mathur, A. Hsu, and H. Suarez, Computing optical flow in resistive networks and the primate visual system, Proc. IEEE Workshop on Visual Motion, pp. 62–72, Irvine, CA, March 1989.

  17. 17.

    C., Koch, W., Bair, J.G., Harris, T., Horiuchi, A., Hsu, and J., Luo, Real-time computer vision and robotics using analog VLSI circuits, In Advances in Neural Information Processing Systems, vol. 2., D., Touretzky, ed., pp. 750–757, Morgan Kaufmann: San Mateo, CA, 1990.

    Google Scholar 

  18. 18.

    C. Koch, A. Moore, W. Bair, T. Horiuchi, B. Bishofberger, and J. Lazzaro, Computing motion using analog VLSI vision chips: an experimental comparison among four approaches, Proc. IEEE Workshop on Visual Motion, pp. 312–324, Princeton, NJ, October 1991.

  19. 19.

    M., Konishi, Centrally synthesized maps of sensory space, Trends Neurosci. 4:163–168, 1986.

    Google Scholar 

  20. 20.

    J., Lazzaro and C., Mead, Circuit models of sensory transduction in the cochlea. In Analog VLSI Implementations of Neural Networds, C., Mead and M., Ismail, eds., pp. 85–101, Kluwer: Norwell, MA, 1989.

    Google Scholar 

  21. 21.

    J., Lazzaro, S., Ryckebusch, M.A., Mahowald, and C., Mead, Winner-take-all networks of O(n) complexity. In Advances in Neural Information Processing Systems, vol. 1, D., Tourestzky. ed., pp. 703–711, Morgan Kaufmann: San Mateo, CA, 1988.

    Google Scholar 

  22. 22.

    D., Marr and E., Hildreth, Theory of edge detection, Proc. Roy. Soc. London, B 207:187–217, 1980.

    Google Scholar 

  23. 23.

    D., Marr and S., Ullman, Directional selectivity and its use in early visual processing, Proc. Roy. Soc. London B 211:151–180, 1981.

    Google Scholar 

  24. 24.

    B. Mathur and C. Koch, eds., Visual Information Processing: From Neurons to Chips, Proc. SPIE, San Diego, 1473, 1991.

  25. 25.

    C., Mead, A sensitive electronic photoreceptor. In 1985 Chapel Hill Conference on Very Large Scale Integration, H., Fuchs, ed. Computer Science Press: Chapel Hill, NC, 1985.

    Google Scholar 

  26. 26.

    C., Mead, Analog VLSI and Neural Systems. Addison-Wesley: Reading, MA 1989.

    Google Scholar 

  27. 27.

    A. Moore and C. Koch, A multiplication-based analog motion detection chip. In Visual Information Processing: From Neurons to Chips. B. Mathur and C. Koch, eds., pp. 66–75, Proc. SPIE 1473, 1991.

  28. 28.

    H.H. Nagel, Analysis techniques for image sequences, Proc. 4th Intern. Conf. Patt. Recog. Kyoto, Japan, November 1978.

  29. 29.

    T., Poggio and W., Reichardt, Considerations on models of movement detection, Kybernetik 13:223–227, 1973.

    Google Scholar 

  30. 30.

    T., Poggio, V., Torre, and C., Koch, Computational vision and regularization theory, Nature 317:314–319, 1985.

    Google Scholar 

  31. 31.

    T., Poggio, W., Yang, and V., Torre, Optical flow: computational properties and networks, biological and analog. In The computing neuron, R., Durbin, C., Miall, and G., Mitchison, eds., pp. 355–370. Addison-Wesley: Menlo Park, CA, 1989.

    Google Scholar 

  32. 32.

    W., Reichardt, R.W., Schlögel, and M., Egelhaaf, Movement detectors of the correlation type provide sufficient information for local computation of 2-D velocity field, Naturwiss enschaften 75:313–315, 1988.

    Google Scholar 

  33. 33.

    J., Tanner and C., Mead, An integrated optical motion sensor, VLSI Signal Processing II, S-Y., Kung, R.E., Owen, and J.G., Nash, eds., pp. 59–76, IEEE Press: NY, 1986.

    Google Scholar 

  34. 34.

    J., Tanner and C., Mead, Optical motion sensor. In Analog VLSI and Neural Systems, C. Mead, pp. 229–255, Addison-Wesley, Reading, MA, 1989.

    Google Scholar 

  35. 35.

    S., Ullman, The interpretation of visual motion. MIT Press: Cambridge, MA, 1979.

    Google Scholar 

  36. 36.

    S., Ullman, Analysis of visual motion by biological and computer systems, IEEE Computer 14:57–69, 1981.

    Google Scholar 

  37. 37.

    S., Uras, F., Girosi, A., Verri, and V., Torre, A computational approach to motion perception, Biol. Cybern. 60:79–87, 1988.

    Google Scholar 

  38. 38.

    J.P.H., van, Santen and G., Sperling, A temporal covariance model of motion perception, J. Opt. Soc. Amer. A 1:451–473, 1985.

    Google Scholar 

  39. 39.

    A., Verri and T., Poggio, “Motion field and optical flow: qualitative properties”, Trans.Patt. Anal. Mach. Intell. 11:490–498, 1989.

    Google Scholar 

  40. 40.

    H.T., Wang, B., Mathur, and C., Koch, Computing optical flow in the primate visual system, Neural Comput. 1:92–103, 1989.

    Google Scholar 

  41. 41.

    A.B., Watson and A.J., Ahumada, Model of human visual-motion sensing, J. Opt. Soc. Amer. A 2:322–341, 1985.

    Google Scholar 

  42. 42.

    A.L., Yuille and N.M., Grzywacz, A computational theory for the perception of coherent visual motion, Nature 333:71–73, 1988.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Horiuchi, T., Bair, W., Bishofberger, B. et al. Computing motion using analog VLSI vision chips: An experimental comparison among different approaches. Int J Comput Vision 8, 203–216 (1992).

Download citation


  • Processing Function
  • Experimental Comparison
  • Correlation Model
  • Analog Circuit
  • Simple Motion