Biodiversity & Conservation

, Volume 5, Issue 8, pp 1015–1021 | Cite as

A virus-Drosophila association: the first steps towards co-evolution?

  • Michèle Thomas-Orillard

Drosophila melanogaster can be parasitized by a picornavirus, the Drosophila C virus (DCV). The virus is not hereditary, but it is horizontally transmitted (by ingestion or contact). When first larval instars come into contact with DCV unusual interactions are observed between host and microparasite. DCV acts differently depending on the stage in the host's life cycle. It boosts the reproductive capacity of adults, but it diminishes survival during the pre-reproductive period. In infected flies, the DCV target organs are principally the follicular cells and the fat body. The infected cells resemble DCV-free cells. According to the parameters of the Drosophila lifecycle, measured for different Drosophila strains, at different temperatures, and for different viral doses, DCV could be considered either as a parasite, because it increases pre-adult mortality, or as a mutualist, because it increases the reproductive capacity of the host and decreases its developmental time. Like many viruses, DCV is extremely pathogenic when injected into flies, which then die within a few days. Only one strain resists the disease longer. The resistant phenotype is dominant. Genes of chromosome 3 of the host are involved. Interactions are discussed in terms of an ‘arms race’ and ‘peaceful cohabitation’. They are also considered in terms of biodiversity for the host and for the microparasite.


Drosophila-virus association Drosophila C virus interactions pathogen mutualist 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson R.M. and May R.M. (1979) Population biology of infectious disease. Part I: Nature 280. 361–7.Google Scholar
  2. Bouma J.E. and Lenski R.E. (1988) Evolution of a bacteria/plasmid association. Nature 335. 351–2.Google Scholar
  3. Brun G. and Plus N. (1980) The viruses of Drosophila. In The Genetics and Biology of Drosophila, 2nd edn (M. Asburner and T.R.F. Wright, eds) pp. 625–702. London, New York: Academic Press.Google Scholar
  4. Carton Y. (1984) Analyse expérimentale de trois niveaux d'interactions entre Drosophila melanogaster et le parasie Leptopilina boulardi (sympatrie, allopatrie, xénopatrie). Génét. Sél. Evol. 16, 417–30.Google Scholar
  5. Contamine, D., Dezelee, S. and Wyers, F. (1989) Persistent infection by viruses. In Endocytobiology IV. (P. Nardon, V. Gianinazzi-Pearson, A-M Grenier, L. Margulis and D.C. Smith, eds). INRA Service des publications, pp. 425–7.Google Scholar
  6. David J. and Fouillet P. (1971) Le taux intrinsèque d'accroissement naturel chez Drosophila melanogaster: intêret de ce paramète pour les études de dynamique des populations. La Terre et la Vie 118, 378–94.Google Scholar
  7. Day P.R. (1974) Genetics of Host Parasite Interaction. San Francisco: Freeman.Google Scholar
  8. Dru Ph., Bras F., Dezelee S., Gay P., Petitjean A-M., Pierre-Deneubourg A., Tenninges D. and Contamine D. (1993) Unusual variability of the Drosophila melanogaster ref(2)P protein which controls the multiplication of sigma rhabdovirus. Genetics 133, 943–54.Google Scholar
  9. Fenner F. (1983) Biological control, as exemplified by smallpox eradication and myxomatosis. Proc. Roy. Soc. London 218, 259–85.Google Scholar
  10. Fleuriet A. (1972) Répartition et fréquence du virus sigma dans des populations naturelles et expérimentales de Drosophila melanogaster. C. R. Séanc. Soc. Biol. 166, 598–601.Google Scholar
  11. Futuyma D.J. (1979) Evolutionary Biology, Sunderland, MA: Sinauer Associates.Google Scholar
  12. Gay P. (1978) Les gènes de la Drosophile qui interviennent dans la multiplication du virus sigma. Mol. Gen. Genet. 159, 269–83.Google Scholar
  13. Gomariz-Zilber E. and Thomas-Orillard M. (1993) Drosophila C virus and Drosophila hosts: a good association in various environments. J. Evol. Biol. 6, 677–89.Google Scholar
  14. Gomariz-Zilber E., Poras M. and Thomas-Orillard M. (1995) Drosophila C virus; Experimental study of infectious yields and underlying pathology in Drosophila laboratory populations. J. Invert. Pathol. 65, 243–7.Google Scholar
  15. Jousset F-X. (1976) Etude expérimentale du spectre d'hôtes du virus C de Drosophila melanogaster chez quelques diptères et lépidoptères. Ann. Microbiol. 127, 529–44.Google Scholar
  16. Jousset F-X and Plus N. (1975) Etude de la transmission horizontale et verticale des picornavirus de Drosophila melanogaster et de Drosophila immigrans. Ann. Microbiol. 126B, 231–49.Google Scholar
  17. Jousset F-X., Plus N. Croizier G. and Thomas M. (1972) Existence chez Drosophila de deux groupes de Picornavirus de propriétés sérologiques et biologiques différentes. C. R. Acad. Sci. 275, 3043–6.Google Scholar
  18. Jousset F-X, Bergoin M. and Revet B. (1977) Characterization of the Drosophila C virus. J. Gen. Virol. 34, 269–85.Google Scholar
  19. Lautié-Harivel N. and Thomas-Orillar M. (1990) Location of Drosophila C virus target organs in Drosophila host population by an immunofluorescent technic. Biol. Cell. 69, 35–9.Google Scholar
  20. L'Héritier P. (1970) Drosophila viruses and their role as evolutionary factors. In Evolutionary Biology (T. Dobzhanski, M.K. Hecht and W.C. Steere, eds) 4, pp. 185–210. New York: Appleton-Century-Crofts.Google Scholar
  21. May R.M. and Anderson R.M. (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc. Roy. Soc. London, B 219, 281–313.Google Scholar
  22. Michalakis Y., Olivieri I., Renaud F. and Raymond M. (1992) Pleiotropic action of parasites: how to be goof for the host. Trends Ecol. Evol. 7, 59–62.Google Scholar
  23. Moore N.F., Pullin J.S.K., Crump W.A.L. and Plus N. (1982) The proteins expressed by different isolates of Drosophila C virus. Arch. Virol. 74, 21–30.Google Scholar
  24. Oldstone M.B.A. (1987) Molecular mimicry and autoimmune disease. Cell 50, 819–20.Google Scholar
  25. Person C. (1959) Gene-for-gene relationships in host-parasite system. Can. J. Bot. 37, 1101–30.Google Scholar
  26. Thomas-Orillard M. (1975) Tentative de localisation des gènes qui président au déterminisme du nombre d'ovarioles chez la drosophile. Archiv für Genetik 48, 116–27.Google Scholar
  27. Thomas-Orillard M. (1984) Modifications of mean ovariole number, fresh weight of adult females and developmental time in Drosophila melanogaster induced by Drosophila C virus. Genetics 107, 635–44.Google Scholar
  28. Thomas-Orillard M. (1988) Interaction between a picornavirus and a wild population of Drosophila melanogaster. Oecologia 75, 516–20.Google Scholar
  29. Thomas-Orillard M. (1990) Paradoxical influence of an RNA virus on Drosophila host population. Endocyt. Cell Res. 7, 97–104. Virus Cole de la Drosophile et dynamique d'une population hôle.Google Scholar
  30. Thomas-Orillard, M. and Legendre, S. Virus C de la Drosophile et dynamique d'une population hôle. (submitted).Google Scholar
  31. Thomas-Orillard M., Jeune B. and Cusset G. (1995) Drosophila-host genetic control of susceptibility to Drosophila C virus Genetics 140, 1289–95.Google Scholar
  32. Wildy P. (1971) Classification and nomenclature of viruses. In Monographs in Virology, Volume 5 (J.L. Melnick, ed.), pp. 81, Basel: Karger.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Michèle Thomas-Orillard
    • 1
  1. 1.Laboratoire d'Ecologie, URA-CNRS 258Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations