Skip to main content
Log in

In vitro effects of monoterpenes on chloroplast membranes

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

A chloroplast preparation was extracted from squash (Cucurbita pepo (L.) var. Senator). Enrichment of intact chloroplasts was achieved by continuous free-flow electrophoresis. The addition of monoterpenes, detergent and free fatty acids changed the elecrophoretic separation pattern characteristically. Monoterpene-dependent degradation of envelope membranes could be prevented by addition of α-tocopherol prior to monoterpene incubation.

Photosynthetic electron transport of photosystem II was completely inhibited by β-pinene, Triton X-100 and linolenic acid. Inhibition could be modulated by addition of α-tocopherol or lecithin (phosphatidylcholine) either before or after inhibition by monoterpenes and detergent.

Percentage reconstitution of photosynthetic electron transport inhibited by β-pinene depended on light conditions and incubation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM and Boardman NK (1966) Fractionation of the photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim Biophys Acta 112: 403–421

    Google Scholar 

  • Asplund RO (1968) Monoterpenes: relationship between structure and inhibition of germination. Phytochemistry 7: 1995–1997

    Google Scholar 

  • Badger RM (1985) Photosynthetic oxygen exchange. Ann Rev Plant Physiol 36: 27–53

    Google Scholar 

  • Briskin DP, Leonard RT and Hodges TK (1987) Isolation of the plasma membrane: membrane markers and general principles. In: Colowick SP, Kaplan NO, Packer L and Douce R (eds) Methods in Enzymology, Vol 148: Plant Cell Membranes, pp 542–558. New York and London: Academic Press

    Google Scholar 

  • Clegg RJ, Middleton B, Bell GD and White DA (1982) The mechanism of cyclic monoterpene inhibition of hepatic 3-hydroxy-3-methyl-glutaryl coenzyme A reductase in vivo in the rat. J Biol Chem 5: 2294–2299

    Google Scholar 

  • Douce R, Neuburger M, Bligny R and Pauly G (1978) Effects of β-pinene on the oxidative properties of purified intact plant mitochondria. In: Ducet G and Lance C (eds) Plant Mitochondria, pp 207–214. Amsterdam: Biomedical Press

    Google Scholar 

  • Dubacq JP and Kader JC (1978) Free flow electrophoresis of chloroplasts. Plant Physiol 61: 465–468

    Google Scholar 

  • Elstner EF (1982) Oxygen activation and oxygen toxicity. Ann Rev Plant Physiol 33: 73–96

    Google Scholar 

  • Frosch S, Trémolière A and Wagner E (1990) Rearrangement of fatty acids in lipid classes of spruce seedlings during β-pinene fumigation. Plant Physiol Biochem 28(5): 567–576

    Google Scholar 

  • Hall DO (1976) The coupling of photophosphorylation to electron transport in isolated chloroplasts. In: Barber J (ed) The Intact Chloroplast, pp 135–170. Amsterdam: Biomedical Press

    Google Scholar 

  • Hannig K, Wirth H, Meyer BH and Zeiller K (1975) Free-flow electrophoresis I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method. Z Physiol Chemie 356: 1209–1223

    Google Scholar 

  • Henninger MD, Dilley RA and Crane FL (1963) Restoration of ferricyanide reduction in acetone-extracted chloroplasts by beta and gamma tocopherol quinones. Biochem Biophys Res Commun 10(3): 237–242

    Google Scholar 

  • Izawa S and Good NE (1972) Inhibition of photosynthetic electron transport and photophosphorylation. In: Colowick SP, Kaplan NO and San Pietro A (eds) Methods in Enzymology Vol XXIV: Photosynthesis and Nitrogen Fixation Part B, pp 355–377. New York and London: Academic Press

    Google Scholar 

  • Jolliot A and Mazliak P (1973) Role des lipides dans diverses activités enzymatiques de la chaine de transport des éléctrons d'une fraction mitochondriale isolée d'inflorescences de choufleur. Plant Sci Lett 1: 21–29

    Google Scholar 

  • Khyse-Anderson J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Meth 10: 203

    Google Scholar 

  • Klofat W and Hannig K (1967a) Elektrophoretische Isolierung von Chloroplasten. Z Physiol Chemie 348: 739–741

    Google Scholar 

  • Klofat W and Hannig K (1967b) Elektrophoretische Trennung von Chloroplastenfragmenten mit unterschiedlichem Verhältnis von Chlorophyll a: Chlorophyll b. Z Physiol Chemie 348: 1332–1334

    Google Scholar 

  • Lawler DW (1990) Photosynthese. Stuttgart and New York: Georg Thieme Verlag

    Google Scholar 

  • Lichtenthaler KH (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Colowick SP, Kaplan NO, Packer L and Douce R (eds) Methods in Enzymology Vol 148: Plant Cell Membranes, pp 350–382. New York and London: Academic Press

    Google Scholar 

  • Maniatis T, Fritsch EF and Sambrock J (1982) Molecular Cloning—A Laboratory Manual. New York: Cold Spring Harbour Laboratory

    Google Scholar 

  • Mourioux G and Douce R (1981) Slow passive diffusion of orthophosphate between intact isolated chloroplasts and suspending medium. Plant Physiol 67: 470–473

    Google Scholar 

  • Pauly G, Douce R and Carde JP (1981) Effects of β-pinene on spinach chloroplast photosynthesis. Z Pflanzenphysiol 104: 199–206

    Google Scholar 

  • Rice EL (1984) Allelopathy. Orlando: Academic Press

    Google Scholar 

  • O'Sullivan JN, Warwick NWM and Dalling MJ (1987) A galactolipase activity associated with the thylakoids of wheat leaves (Triticum aestivum L.). J Plant Physiol 131: 393–404

    Google Scholar 

  • Schägger H and v. Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

    Google Scholar 

  • Seras M, Garnier J, Tremolieres A and Guyon D (1989) Lipid biosynthesis in cells of the wild type and of two photosynthesis mutants of Chlamydomonas reinhardtii. Plant Physiol Biochem 27(3): 393–399

    Google Scholar 

  • Siefermann-Harms D (1987) The light-harvesting and protective functions of carotenoids in photosynthetic membranes. Physiol Plant 69: 561–568

    Google Scholar 

  • Wagner E, Vollbrecht P, Janistyn B, Gross K and Woerth J (1987) Monoterpen-vermittelte zerstörung des photosyntheseapparates von waldbäumen. Allgemeine Forstzeitschrift 42: 705–708

    Google Scholar 

  • Walker D (1987) The use of the oxygen electrode and fluorescence probes in simple measurements of photosynthesis. Sheffield: Research Institute for Photosynthesis, University of Sheffield

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingler, H., Frosch, S. & Wagner, E. In vitro effects of monoterpenes on chloroplast membranes. Photosynth Res 28, 109–118 (1991). https://doi.org/10.1007/BF00054124

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00054124

Key words

Navigation