Skip to main content
Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Earth, Moon, and Planets
  3. Article

Basin-ring spacing on the Moon, Mercury, and Mars

  • Published: October 1987
  • Volume 39, pages 129–194, (1987)
  • Cite this article
Download PDF
Earth, Moon, and Planets Aims and scope Submit manuscript
Basin-ring spacing on the Moon, Mercury, and Mars
Download PDF
  • Richard J. Pike1 &
  • Paul D. Spudis2 
  • 377 Accesses

  • Explore all metrics

Abstract

Radial spacing between concentric rings of impact basins that lack central peaks is statistically similar and nonrandom on the Moon, Mercury, and Mars, both inside and outside the main ring. One spacing interval, (2.0 ± 0.3)0.5D, or an integer multiple of it, dominates most basin rings. Three analytical approaches yield similar results from 296 remapped or newly mapped rings of 67 multi-ringed basins: least-squares of rank-grouped rings, least-squares of rank and ring diameter for each basin, and averaged ratios of adjacent rings. Analysis of 106 rings of 53 two-ring basins by the first and third methods yields an integer multiple (2 ×) of 2.00.5D. There are two exceptions: (1) Rings adjacent to the main ring of multi-ring basins are consistently spaced at a slightly, but significantly, larger interval, (2.1 ± 0.3)0.5D; (2) The 88 rings of 44 protobasins (large peak-plus-inner-ring craters) are spaced at an entirely different interval (3.3 ± 0.6)0.5D.

The statistically constant and target-invariant spacing of so many rings suggests that this characteristic may constrain formational models of impact basins on the terrestrial planets. The key elements of such a constraint include: (1) ring positions may not have been located by the same process(es) that formed ring topography; (2) ring location and emplacement of ring topography need not be coeval; (3) ring location, but not necessarily the mode of ring emplacement, reflects one process that operated at the time of impact; and (4) the process yields similarly-disposed topographic features that are spatially discrete at 20.5D intervals, or some multiple, rather than continuous. These four elements suggest that some type of wave mechanism dominates the location, but not necessarily the formation, of basin rings. The waves may be standing, rather than travelling. The ring topography itself may be emplaced at impact by this and/or other mechanisms and may reflect additional, including post-impact, influences.

Article PDF

Download to read the full article text

Similar content being viewed by others

Topographic Features of the Lunar Maria and Basins

Article 01 May 2021

The demise of Phobos and development of a Martian ring system

Article 23 November 2015

A distinct ripple-formation regime on Mars revealed by the morphometrics of barchan dunes

Article Open access 22 November 2022
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Baldwin, R. B.: 1949, The Face of the Moon, Univ. Chicago Press, pp. 38–47 and 200–216.

  • Baldwin, R. B.: 1963, The Measure of the Moon, Univ. Chicago Press, pp. 314–332.

  • Baldwin, R. B.: 1974, ‘On the Origin of the Mare Basins’, Proc. Lunar Sci. Conf. 5th, 1–10.

  • Baldwin, R. B.: 1981, On the Tsunami Theory of the Origin of Multi-ring Basins, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 275–288.

    Google Scholar 

  • Boon, J. D. and Albritton, C. C.: 1936, Meteorite Craters and Their Possible Relationship to “Cryptovolcanic Structures”, Field and Lab. 5, 1–9.

    Google Scholar 

  • Carr, M. H. (ed.): 1984, The Geology of the Terrestrial Planets, NASA Spec. Publ. 469, 1984.

  • Chadderton, L. T., Krajenbrink, F. G., Katz, R., and Poveda, A.: 1969, Standing Waves on the Moon, Nature 223, 259–263.

    Google Scholar 

  • Clow, G. D. and Pike, R. J.: 1982, Statistical Test of the √2 Spacing Rule for Basin Rings, Lunar Planet. Sci. XIII 123–124.

    Google Scholar 

  • Croft, S. K.: 1979, Impact Craters from Centimeters to Megameters, Ph.D. dissertation, Univ. of Calif. Los Angeles, 264 pp.

    Google Scholar 

  • Croft, S. K.: 1980, Cratering Flow Fields: Implications for the Excavation and Transient Expansion Stages of Crater Formation, Proc. Lunar Planet. Sci. 11, 2347–2378.

    Google Scholar 

  • Croft, S. K.: 1981a, The Modification Stage of Basin Formation: Conditions of Ring Formation, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 227–257.

    Google Scholar 

  • Croft, S. K.: 1981b, The Excavation Stage of Basin Formation: A Qualitative Model, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 207–225.

    Google Scholar 

  • Croft, S. K.: 1985, The Scaling of Complex Craters, Proc. Lunar Planet. Sci. Conf. 15, J. Geophys. Res. 90, C828-C842.

    Google Scholar 

  • Davies, M. E., Dwornik, S. E., Gault, D. E., and Strom, R. G.: 1976, Atlas of Mercury (photographic edition), NASA Special Publ. 423.

  • DeHon, R. A.: 1978, In Search of Ancient Astroproblems: Mercury, Repts. Planetary Geology Program 1977–1978, NASA Tech. Memo. 79729, pp. 150–152.

    Google Scholar 

  • DeHon, R. A., Scott, D. H., and Underwood, J. R., Jr.: 1981, Geologic map of the Kuiper quadrangle of Mercury U.S. Geol. Survey Misc. Inves. Map 1-1233, scale 1:5 000 000.

  • Dence, M. R.: 1964, A Comparative Structural and Petrographic Study of Probable Canadian Meteorite Craters, Meteoritics 2, 249–270.

    Google Scholar 

  • Dence, M. R.: 1976, Notes Toward an Impact Model for the Imbrium Basin, Interdisciplinary Studies by the Imbrium Consortium 1, 147–155.

    Google Scholar 

  • Dence, M. R.: 1977, The Contribution of Major Impact Processes to Lunar Crustal Evolution, Phil. Trans. R. Soc. London A285, 259–265.

    Google Scholar 

  • Dietz, R. S.: 1946, The Meteorite Impact Origin of the Moon's Surface Features, J. Geology 54, 359–375.

    Google Scholar 

  • El-Baz, F.: 1972, Al-Khwarizmi: A New-found Basin on the Lunar Far Side, Science 180, 1173–1176.

    Google Scholar 

  • Fielder, G.: 1963, Nature of the Lunar Maria, Nature 198, 1256–1260.

    Google Scholar 

  • Floran, R. J. and Dence, M. R.: 1976, ‘Morphology of the Manicouagan Ring-Structure, Quebec, and Some Comparisons with Lunar Basins and Craters’, Proc. Lunar Sci. Conf. 7th, 2845–2865.

  • Flores, J., Novaro, O., and Seligman, T. H.: 1987, Possible Resonance Effect in the Distribution of Earthquake Damage in Mexico City, Nature 326, 783–785.

    Google Scholar 

  • Frey, H. and Lowry, B. L.: 1979, ‘Large Impact Basins on Mercury and Relative Crater Production Rates’, Proc. Lunar Planet Sci. Conf. 10th, 2669–2687.

  • Gault, D. E.: 1974, ‘Impact Cratering’, in R. Greeley and P. Schultz (eds.), A Primer in Lunar Geology, NASA Tech. Memo. X-62359, pp. 137–175.

  • Grieve, R. A. F., Robertson, P. B., and Dence, M. R.: 1981, Constraints on the Formation of Ring Impact Structures, Based on Terrestrial Data, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 37–57.

    Google Scholar 

  • Hale, W. S. and Grieve, R. A. F.: 1982, Volumetric Analysis of Complex Lunar Craters: Implications for Basin Ring Formation, J. Geophys. Res. 87, Suppl. A65-A76.

    Google Scholar 

  • Hartmann, W. K.: 1981, Discovery of Multi-ring Basins: Gestalt Perception in Planetary Science, in Multi-ring Basins, Proc. Lun. Planet. Sci. 12A, pp. 79–90.

    Google Scholar 

  • Hartmann, W. K. and Kuiper, G. P.: 1962, Concentric Structures Surrounding Lunar Basins, Commun. Lunar Planet. Lab. 1, 55–66.

    Google Scholar 

  • Hartmann, W. K. and Wood, C. A.: 1971, Moon: Origin and Evolution of Multi-ring Basins, The Moon 3, 3–78.

    Google Scholar 

  • Head, J. W.: 1974, Orientale Multi-ringed Basin Interior and Implications for the Petrogenesis of Lunar Highland Samples, The Moon 11, 327–356.

    Google Scholar 

  • Head, J. W.: 1977a, Origin of Outer Rings in Lunar Multi-ringed Basins: Evidence from Morphology and Ring Spacing, in D. J. Roddy, R. O. Pepin, and R. B. Merrill (eds.), Impact and Explosion Cratering, Pergamon Press, New York, pp. 563–573.

    Google Scholar 

  • Head, J. W.: 1977b, ‘Regional Distribution of Imbrium Basin Deposits: Relationship to Pre-Imbrian Topography and Mode of Emplacement’, in Interdisciplinary Studies by the Imbrium Consortium, Lunar Planet. Inst. Contrib. No. 268D, pp. 120–125.

  • Hodges, C. A. and Wilhelms, D. E.: 1978, Formation of Lunar Basin Rings, Icarus 34, 294–323.

    Google Scholar 

  • Howard, K. A., Wilhelms, D. E., and Scott, D. H.: 1974, Lunar Basin Formation and Highland Stratigraphy, Rev. Geophys. Space Phys. 12, 309–327.

    Google Scholar 

  • Ivanov, B. A.: 1976, ‘The Effect of Gravity on Crater Formation: Thickness of Ejecta and Concentric Basins’, Proc. Lunar Sci. Conf. 7th, 2947–2965.

  • Lance, R. H. and Onat, E. T.: A Comparison of Experiments and Theory in the Plastic Bending of Circular Plates, J. Mech. Phys. Solids 10, 301–311.

  • Mackin, J. H.: 1969, Origin of Lunar Maria, Bull. Geol. Soc. America 80, 735–748.

    Google Scholar 

  • McCauley, J. F.: 1968, Geologic Results from the Lunar Precursor Probes, American Inst. Aeronaut. Astronaut. J. 6, 1991–1996.

    Google Scholar 

  • McCauley, J. F.: 1977, Orientale and Caloris, Phys. Earth Planet. Interiors 15, 220–230.

    Google Scholar 

  • McKinnon, W. B.: 1981, Application of Ring Tectonic Theory to Mercury and other Solar System Bodies, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 259–273.

    Google Scholar 

  • McKinnon, W. B. and Melosh, H. J.: 1980, Evolution of Planetary Lithospheres: Evidence from Multiringed Structures on Ganymede and Callisto, Icarus 44, 454–471.

    Google Scholar 

  • Melosh, H. J.: 1979, Acoustic Fluidization: A New Geologic Process?, J. Geophys. Res. 84, 7513–7520.

    Google Scholar 

  • Melosh, H. J. and McKinnon, W. B.: 1978, The Mechanics of Ringed Basin Formation, Geophys. Res. Letts. 5, 985–988.

    Google Scholar 

  • Moore, H. J., Hodges, C. A., and Scott, D. H.: 1974, ‘Multiringed Basins — Illustrated by Orientale and Associated Features’, Proc. Lunar Sci. Conf. 5th, 71–100.

  • Moore, J. M., Spudis, P. D., Pike, R. J., and Greeley, R.: 1984, Multiringed Basins of the Saturnian Satellites, Geol. Soc. America Abstracts With Programs 16, 600.

    Google Scholar 

  • Murray, B. C., Belton, M. J. S., Danielson, G. E., Davies, M. E., Gault, D. E., Hapke, B., O'Leary, B., Strom, R. G., Suomi, V., and Trask, N.: 1974, Mercury's Surface: Preliminary Description and Interpretation from Mariner 10 Pictures, Science 185, 169–179.

    Google Scholar 

  • Murray, J. B.: 1980, Oscillating Peak Model of Basin and Crater Formation, Moon and Planets 22, 269–291.

    Google Scholar 

  • Natrella, M. G.: 1963, Experimental Statistics, Natl. Bureau Standards Handbook 91, pp. 4–1 to 4–14.

    Google Scholar 

  • Oberbeck, V. R.: 1975, The Role of Ballistic Erosion and Sedimentation in Lunar Stratigraphy, Rev. Geophys. Space Phys. 13, 337–362.

    Google Scholar 

  • Pike, R. J.: 1981, A Size: Rank Model for Basin Rings, Repts. Planetary Geology Program — 1981, NASA Tech. Memo. 84211, 123–125.

    Google Scholar 

  • Pike, R. J.: 1982, Crater Peaks to Basin Rings: The Transition on Mercury and other Bodies, Repts. Planetary Geology Program —1982, NASA Tech. Memo. 85127, 117–119.

    Google Scholar 

  • Pike, R. J.: 1983, Large Craters or Small Basins on the Moon, Lunar Planet. Sci. XIV, 610–611.

    Google Scholar 

  • Pike, R. J.: 1985, Some Morphologic Systematics of Complex Impact Structures, Meteoritics 20, 49–68.

    Google Scholar 

  • Pike, R. J. and Spudis, P. D.: 1984a, Ring Spacing of Mercurian Multi-ring Basins and Basin Ring Formation, Repts. Planetary Geology Program — 1983, NASA Tech. Memo. 86246, 90–92.

    Google Scholar 

  • Pike, R. J. and Spudis, P. D.: 1984b, Similar Spacing of Basin Rings on Mars, Mercury, and the Moon, Lunar Planet. Sci. XV, 647–648.

    Google Scholar 

  • Pike, R. J., Spudis, P. D., and Clow, G. D.: 1985, Average Spacing for Rings of Individual Multi-Ring Basins is 2.00.5D, Repts. Planetary Geology and Geophysics Program — 1984, NASA Tech. Memo. 87563, 189–191.

    Google Scholar 

  • Quaide, W. L., Gault, D. E., and Schmidt, R. A.: 1965, Gravitative Effects on Lunar Impact Structures, Annals N. Y. Acad. Sci, 123, Art. 2, 563–572.

    Google Scholar 

  • RAND Corporation: 1955, A Million Random Digits with 100 000 Normal Deviates, The Free Press, Glencoe, Ill.

    Google Scholar 

  • Saunders, R. S., Roth, L. E., Elachi, C., and Schubert, G.: 1978, Topographic Confirmation of 500 km Degraded Crater North of Ladon Valles Mars, Repts. Planetary Geology Program 1977–1978, NASA TM 79729, 157–159.

    Google Scholar 

  • Schaber, G. G., Boyce, J. M., and Trask, N. J.: 1977, Moon-Mercury: Large Impact Structures, Isostasy and Average Crustal Viscosity, Phys. Earth Planet. Interiors 15, 189–201.

    Google Scholar 

  • Schultz, P. H.: 1976, Moon Morphology, Univ. Texas Press, pp. 7–35, 250–255, 460–466, and 472–499.

  • Schultz, P. H.: 1979, Evolution of Intermediate-age Impact Basins on the Moon, Conf. Lunar Highlands Crust, Lunar Planet. Inst. Houston, 141–142.

    Google Scholar 

  • Schultz, P. H.: 1984, Impact Basin Control of Volcanic and Tectonic Processes on Mars, Lunar Planet. Sci. XV, 728–729.

    Google Scholar 

  • Schultz, P. H. and Gault, D. E.: 1986, Experimental Evidence for Non-proportional Growth of Large Craters, Lunar Planet. Sci. XVIII, 777–778.

    Google Scholar 

  • Schultz, P. H. and Glicken, H.: 1979, Impact Crater and Basin Control of Igneous Processes on Mars, J. Geophys. Res. 84, 8033–8047.

    Google Scholar 

  • Schultz, P. H. and Merrill, R. B. (eds.): 1981, Proc. Conf. Multi-ring Basins: Formation and Evolution, Proc. Lunar Planet. Sci. 12A.

  • Schultz, P. H., Schultz, R. A., and Rogers, J.: 1982, The Structure and Evolution of Ancient Impact Basins on Mars, J. Geophys. Res. 87, 9803–9820.

    Google Scholar 

  • Schultz, P. H., Orphal, D., Miller, B., Borden, W. F., and Larson, S. A.: 1981, Multi-ring Basin Formation: Possible Clues from Impact Cratering Calculations, in Multi-ring Basins, Proc. Lunar Planet. Sci. 12A, pp. 181–195.

    Google Scholar 

  • Scott, D. H., McCauley, J. F., and West, M. N.: 1978, Geologic map of the West side of the Moon, U.S. Geol. Survey Misc. Inves. Map I-1034, scale 1:5 000 000.

  • Solomon, S. C. and Head, J. W.: 1980, Lunar Mascon Basins: Lava filling, Tectonics and Evolution of the Lithosphere, Rev. Geophys. Space Phys. 18, 107–141.

    Google Scholar 

  • Spudis, P. D.: 1984, Mercury: New Identification of Ancient Multi-ring Basins and Implications for Geologic Evolution, Repts. Planetary Geology Program — 1983, NASA Tech. Memo. 86246, 87–89.

    Google Scholar 

  • Spudis, P. D. and Prosser, J. G.: 1984, Geologic map of the Michelangelo quadrangle of Mercury, U.S. Geol. Survey Misc. Inves. Map I-1659, scale 1:5 000 000.

  • Spudis, P. D. and Strobell, M. E.: 1984, New Identification of Ancient Multi-ring Basins on Mercury and Implications for Geologic Evolution, Lunar Planet. Sci. XV, 814–815.

    Google Scholar 

  • Spudis, P. D., Hawke, B. R., and Lucey, P.: ‘Composition of Orientale Basin Deposits and Implications for the Lunar Basin-forming Process’, Proc. Lunar Planet. Sci. Conf. 15, J. Geophys. Res. 89, C197–C210.

  • Spudis, P. D.: 1986, ‘Materials and Formation of the Imbrium Basin’, in P. D. Spudis and G. Ryder (eds.), Workshop on Geology and Petrology of Apollo 15 Landing Site, LPI Tech. Rept. 86-03, pp. 100–104.

  • Stam, M., Schultz, P. H., and McGill, G. E.: 1984, Martian Impact Basins: Morphology Differences and Tectonic Provinces, Lunar Planet. Sci. XV, 818–819.

    Google Scholar 

  • Stuart-Alexander, D. E. and Howard, K. A.: 1970, Lunar Maria and Circular Basins — A Review, Icarus 12, 440–456.

    Google Scholar 

  • Trask, N. J. and Guest, J. E.: 1975, Preliminary Geologic Terrain Map of Mercury, J. Geophys. Res. 80, 2461–2477.

    Google Scholar 

  • Van Dorn, W. G.: 1968, Tsunamis on the Moon?, Nature 220, 1102–1107.

    Google Scholar 

  • Van Dorn, W. G.: 1969, Lunar Maria: Structure and Evolution, Science 165, 693–695.

    Google Scholar 

  • Wilhelms, D. E.: 1973, Comparison of Martian and Lunar Multi-ringed Circular Basins, J. Geophys. Res. 78, 4084–4095.

    Google Scholar 

  • Wilhelms, D. E.: 1980a, Irregularities of Lunar Basin Structure, Repts. Planetary Geology Program 1979–1980, NASA Tech. Memo. 81776, 25–27.

    Google Scholar 

  • Wilhelms, D. E.: 1980b, ‘Geologic Map of Lunar Ringed Impact Basins (abstract)’, Conf. on Multi-ring Basins, Lunar Planet. Inst. Contrib. 414, Houston, 115–117.

  • Wilhelms, D. E.: 1984, ‘Moon’, Chapter 6 in M. H. Carr (ed.), The Geology of the Terrestrial Planets, NASA Spec. Publ. 469, pp. 106–205.

  • Wilhelms, 1987, The Geologic History of the Moon, U.S. Geol. Survey Prof. Paper 1348 (in press).

  • Wilhelms, D. E. and El-Baz, F.: 1977, Geologic Map of the East Side of the Moon, U.S. Geol. Survey Misc. Inv. Ser. Map I-948.

  • Wilhelms, D. E. and McCauley, J. F.: 1971, Geologic Map of the Near Side of the Moon, U.S. Geol. Survey Misc. Inv. Ser. Map I-703.

  • Wilhelms, D. E., Hodges, C. A., and Pike, R. J.: 1977, Nested Crater Model of Lunar Ringed Basins, in D. J. Roddy, R. O. Pepin, and R. B. Merrill (eds), Impact and Explosion Cratering, Pergamon, N. Y., pp. 539–562.

    Google Scholar 

  • Wood, C. A.: 1980, ‘Martian Double-ring Basins: New Observations’, Proc. Lunar Planet. Sci. Conf. 11th, 2221–2241.

  • Wood, C. A. and Head, J. W.: 1976, ‘Comparison of Impact Basins on Mercury, Mars and the Moon’, Proc. Lunar Sci. Conf. 7th, 3629–3651.

Download references

Author information

Authors and Affiliations

  1. U.S. Geological Survey, Menlo Park, California, U.S.A.

    Richard J. Pike

  2. U.S. Geological Survey, Flagstaff, Arizona, U.S.A.

    Paul D. Spudis

Authors
  1. Richard J. Pike
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. Paul D. Spudis
    View author publications

    You can also search for this author inPubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pike, R.J., Spudis, P.D. Basin-ring spacing on the Moon, Mercury, and Mars. Earth Moon Planet 39, 129–194 (1987). https://doi.org/10.1007/BF00054060

Download citation

  • Received: 26 November 1986

  • Issue Date: October 1987

  • DOI: https://doi.org/10.1007/BF00054060

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Mercury
  • Ring Location
  • Topographic Feature
  • Central Peak
  • Concentric Ring
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature