Journal of Atmospheric Chemistry

, Volume 4, Issue 3, pp 375–395 | Cite as

OCS, H2S, and CS2 fluxes from a salt water marsh

  • Mary Anne Carroll
  • Leroy E. Heidt
  • Ralph J. Cicerone
  • Ronald G. Prinn


The diurnal-to-monthly behavior of the fluxes of OCS, H2S, and CS2 from a mixed-Spartina grass-covered site in a Wallops Island salt water marsh was determined through a series of experiments in August and September, 1982. Absolute flux values were determined for OCS and H2S, while only relative values were determined for CS2. The rates of emission of OCS and H2S were observed to vary diurnally and to be strongly influenced by tides. The time-averaged flux values show that such mixed-Spartina stands are insignificant (≪ 1%) global sources of H2S or CS2 and insignificant contributors to the global OCS cycle (< 1%). These results demonstrate that some marsh regions play a minor role in the global sulfur budget and, consequently, that the inclusion of such areas in extrapolations of measurements of more productive regions could lead to an overestimate of the role of salt water marshes in the global sulfur budget.

Key words

Carbonyl sulfide hydrogen sulfide carbon disulfide fluxes and salt water marsh Spartina grasses 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. F., Farwell, S. O., Pack, M. R., and Bamesburger, W. L., 1979, Preliminary measurements of biogenic sulfur-containing gas emissions from soils, J. Air Pollut. Control Assoc. 29, 380–383.Google Scholar
  2. Adams, D. F., Farwell, S. O., Robinson, E., and Pack, M. R., 1980, Assessment of Biogenic Sulfur Emissions in the SURE Area, EPRI Final Report, No. EA-1516, Electric Power Research Institute, Palo Alto, CA.Google Scholar
  3. Adams, D. F., Farwell, S. O., Robinson, E., Pack, M., and Bamesburger, W. L., 1981, Biogenic Sulfur Source Strength, Paper No. 81-15.3, presented at the Annual Meeting of APCA, Philadelphia, PA.Google Scholar
  4. Andreae, M. O., and Raemdonck, H., 1983, Dimethylsulfide in the surface ocean and the marine atmosphere: a global view, Science 221, 744–747.Google Scholar
  5. Aneja, V. P., Corse, E. W., Cupitt, L. T., King, J. C., Overton, J. H. Jr., Rader, R. E., Richards, M. H., Sher, H. J., and Whitkus, R. J., 1979a, Biogenic Sulfur Sources Strength Field Study, Northrop Services, Inc. Report No. ESC-TR-79-22, Research Triangle Park, NC.Google Scholar
  6. Aneja, V. P., Overton, J. H.Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E. 1979b, Direct measurements of emission rates of some atmospheric biogenic sulfur compounds, Tellus 31, 174–178.Google Scholar
  7. Aneja, V. P., Overton, J. H.Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979c, Carbon disulfide and carbonyl sulfide from biogenic sources and their contribution to the global sulfur cycle, Nature 282, 493–496.Google Scholar
  8. Aneja, V. P., Overton, J. H. Jr., Cupitt, L. T., Durham, J. L., and Wilson, W. E., 1979, Measurements of Emission Rates of Carbon Disulfide from Biogenic Sources and its Possible Importance to the Stratospheric Aerosol Layer, presented at the 86th National Meeting of American Institute of Chemical Engineers, Symposium on Aerosols, Houston, TX.Google Scholar
  9. Baas Becking, L. G. M., and Wood, E. J. F., 1955, Biological processes in the estuarine environment. I and II. Ecology of the sulfur cycle, Koninkl. Ned. Akad. Wetenschap Proc. U. B48, 160–181.Google Scholar
  10. Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a fresh water lake. I. Field observation, Antonie van Leeuwenhoek 40, 297–306.Google Scholar
  11. Carroll, M. A., 1983, An Experimental Study of the Fluxes of Reduced Sulfur Gases from a Salt Water Marsh, Doctoral thesis, Massachusetts Institute of Technology (Cambridge, Massachusetts) and National Center for Atmospheric Research (Cooperative Thesis No. 73), Boulder, CO.Google Scholar
  12. Crutzen, P. J., 1976, The possible importance of CSO for the sulfate layer of the stratophere, Geophys. Res. Lett. 3, 73–76.Google Scholar
  13. Eriksson, E., 1960, The yearly circulation of chloride and sulfur in nature; meteorological, geochemical, and pedological implications, 2, Tellus 12, 63–109.Google Scholar
  14. Eriksson, E., 1963, The yearly circulation of sulfur in nature, J. Geophys. Res. 68, 4001–4008.Google Scholar
  15. Ferry, J. G., and Peck, H. D. Jr., 1977, Relationships between sulfate reduction and methane production in salt marsh sediments, Bacteriol. Proc. 236.Google Scholar
  16. Foulger, B. E. and Simmonds, P. G., 1979, Drier for field use in the detection of trace atmospheric gases, Anal. Chem. 51, 1089–1090.Google Scholar
  17. Friend, J. P., Chemistry of the Lower Atmosphere (S. I. Rasool, ed.), Plenum Press, N.Y., pp. 177–201.Google Scholar
  18. Garrels, R. M., Mackenzie, F. T., and Hunt, C., 1973, Chemical Cycles and the Global Environment, William Kaufmann, Los Altos, California.Google Scholar
  19. Goldberg, A. B., Maroulis, P. J., Wilner, L. A., and Bandy, A. R., 1981, Studies of H2S emissions from a salt water marsh, Atmos. Env. 15, 11–18.Google Scholar
  20. Gooch, E. L., 1968, Hydrogen sulfide production and its effect on inorganic phosphate release from the sediments of the Canary Creek marsh. M. S. thesis, University of Delaware, Newark, Del.Google Scholar
  21. Goodwin, J. T., Wakeham, S. G., Dacey, J. W. H., and Howes, B. C., 1982, Dimethyl Sulfide in Salt Marsh Pore Waters, presented at the Biogeochemistry of Particulates and Sediments Section of the AGU Meeting, San Francisco, CA.Google Scholar
  22. Granat, L., Rodhe, H., and Hallberg, R. O., 1976, Nitrogen, Phosphorus and Sulphur — Global Cycles, (B. H. Svensson and R. Soderlund, eds.), SCOPE Report 7, Ecol. Bull., 22, pp. 89–134.Google Scholar
  23. Gravenhorst, G., 1983, Der Einfluß von Wolken und Niederschlag auf die vertikale Verteilung atmosphärischer Spurenstoffe in einem eindimensionalen reaktionskinetischen Modell. Berichte des Instituts für Meteorologie und Geophysik der Universität Frankfurt a.M. Nr. 52, Tab. 14.Google Scholar
  24. Hansen, M. H., Ingvorsen, K., and Jørgensen, B. B., 1978, Mechanisms of hydrogen sulfide release from coastal marine sediments to the atmosphere. Limnol. Oceanogr. 23, 68–76.Google Scholar
  25. Hill, F. B., Aneja, V.P., and Felder, R. M., 1978, A technique for measurement of biogenic sulfur emission fluxes, Environ. Sci. and Health 13, 199–225.Google Scholar
  26. Hitchcock, D. R., 1978, A problem with flux chamber measurements of biogenic sulfur emissions, unpublished manuscript.Google Scholar
  27. Howes, B. L., Howarth, R. W., Teal, J. M., and Valiela, I., 1981, Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production, Limnol. Oceanogr. 26, 350–360.Google Scholar
  28. Ingvorsen, K. and Jørgensen, B. B., 1982, Seasonal variation in H2S emission to the atmosphere from intertidal sediments in Denmark, Atmos. Env. 16, 855–865.Google Scholar
  29. Ivanov, M. V., 1981, Some Perspectives of the Major Biogeochemical Cycles (G. E. Likens, ed.), SCOPE Report 17, John Wiley and Sons, pp. 61–78.Google Scholar
  30. Junge, C. E., 1963a, Sulfur in the atmosphere, J. Geophys. Res. 68, 3975–3976.Google Scholar
  31. Junge, C. E., 1963b, Air Chemistry and Radioactivity, Academic Press, New York, New York.Google Scholar
  32. Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazrus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175, 587–596.Google Scholar
  33. King, G. M., and Skyring, G. W., 1977, A seasonal study of methanogenesis in a Georgia salt marsh, Bacteriol. Proc. 243.Google Scholar
  34. King, G. M. and Wiebe, W. J., 1978, Methane release from soils of a Georgia salt marsh, Geochim. Cosmochim. Acta 42, 334–348.Google Scholar
  35. King, G. M., Klug, M. J., Wiegert, R. G., and Chalmers, A. G., 1982, Relation of soil water movement and sulfide concentration to Spartina alterniflora production in a Georgia salt marsh, Science 218, 61–63.Google Scholar
  36. Kuster, W. C. and Goldan, P. D., 1986, Quantitation of the losses of gaseous sulfur compounds to enclosure walls, Environ Sci. Technol. (submitted).Google Scholar
  37. Linthurst, R. A., 1979, The effect of aeration on the growth of Spartina alterniflora Loisel, Am. J. Botany 66, 685–691.Google Scholar
  38. Linthurst, R. A. and Seneca, E. D., 1980, The effects of standing water and drainage potential on the Spartina Alterniflora substrate complex in the North Carolina salt marsh, Est. and Cstl. Mar. Sci. 11, 41–52.Google Scholar
  39. Lovelock, J. E., 1974, CS2 and the natural sulphur-cycle, Nature 248, 625–626.Google Scholar
  40. Maroulis, Peter J., and Bandy, Alan R., 1977, Estimate of the contribution of biologically produced dimethyl sulfide to the global sulfur cycle, Science 196, 647–648.Google Scholar
  41. Maroulis, P., Torres, A., and Bandy, A., 1977, Atmospheric concentrations of carbonyl sulfide in the southwestern and eastern United States, Geophys. Res. Lett. 4, 510–512.Google Scholar
  42. Mendelssohn, I. A. and Seneca, E. C., 1980, The influence of soil drainage on the growth of salt marsh cordgrass Spartina alterniflora in North Carolina, Est. and Cstl. Mar. Sci. 11, 27–40.Google Scholar
  43. Moss, M. R., 1978, Sulfur in the Environment, Part I: The Atmospheric Cycle (J. O. Nriagu, ed.), John Wiley and Sons, N.Y., N.Y., pp. 23–50.Google Scholar
  44. Oshrain, R. L., 1977, Aspects of Anaerobic Sulfur Metabolism in Salt Marsh Soils, Masters thesis, University of Georgia, Athens, GA.Google Scholar
  45. Pearson, C. D. and Hines, W. J., 1977, Determination of hydrogen sulfide, carbonyl sulfide, carbon disulfide, and sulfur dioxide in gases and hydrocarbon streams by gas chromatography/flame photometric detection, Anal. Chem. 49, 123–126.Google Scholar
  46. Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D., 1982, The oceanic source of carbonyl sulfide (OCS), Atmos. Env. 16, 1591–1594.Google Scholar
  47. Robinson, E. and Robbins, R., 1968, Emissions, concentrations and fate of gaseous atmospheric pollutants, Stanford Research Inst., Menlo Park, California.Google Scholar
  48. Robinson, E. and Robbins, R., 1970, Gaseous sulphur pollutants from urban and natural sources, J. Air Pollut. Control Assoc. 20, 303–306.Google Scholar
  49. Schwarzenbach, R. P., Bromund, R. H., Gischwend, P. M., and Zafiriou, O. C., 1978, Volatile organic compounds in coastal seawater, Organic Geochem. 1, 93–107.Google Scholar
  50. Skyring, G. W., Oshrain, R. L., and Wiebe, W. J., 1979, Sulfate reduction rates in Georgia marshland soils, Geomicrobio. J. 1, 389–400.Google Scholar
  51. Sivanesaw, A. and Manners, J. G., 1972, Bacteria of muds colonized by Spartina townsendii and their possible role in Spartina die back, Plant and Soil 36, 349–361.Google Scholar
  52. Steudler, P. A. and Peterson, B. J., 1984, Contribution of gaseous sulphur from salt marshes to the global sulphur cycle, Nature 311, 455–457.Google Scholar
  53. Steudler, P. A. and Peterson, B. J., 1985, Annual cycle of gaseous sulfur emissions from a New England Spartina Alterniflora marsh, Atmos. Env. 19, 1,411–1,416.Google Scholar
  54. Sze, N. D. and Ko, M. K. W., 1978, Stratospheric sulfur cycle: A theoretical model, unpublished manuscript.Google Scholar
  55. Thorsnberry, W. L.Jr., 1971, Isothermal gas chromatographic separation of carbon dioxide, carbon oxysulfide, hydrogen sulfide, and sulfur dioxide, Anal. Chem., 43, 452–453.Google Scholar
  56. Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill, P., 1980, OCS, stratospheric aerosols and climate, Nature 283, 283–286.Google Scholar
  57. Várhelyi, G. and Gravenhorst, G., 1981, An attempt to estimate biogenic sulfur emission into the atmosphere, Idójárás 85, 126–133.Google Scholar
  58. Winfrey, M. R. and Zeikus, J. G., 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33, 275–281.Google Scholar
  59. Zehnder, A. J. B. and Zinder, S. H., 1980, Vol. 1, part a, Handbook of Env. Chem.: “The Natural Environment and the Biogeochemical Cycles”, Springer-Verlag, Berlin, Heidelberg, pp. 105–145.Google Scholar
  60. Zobell, C. E. and Rittenberg, S. E., 1948, Sulfate-reducing bacteria in marine sediments, J. Mar. Res. 7, 602–617.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Mary Anne Carroll
    • 1
    • 2
  • Leroy E. Heidt
    • 1
  • Ralph J. Cicerone
    • 1
  • Ronald G. Prinn
    • 2
  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderU.S.A.
  2. 2.Department of Earth Atmospheric, and Planetary SciencesMITCambridgeU.S.A.

Personalised recommendations