Advertisement

Journal of Atmospheric Chemistry

, Volume 4, Issue 3, pp 311–334 | Cite as

Study of metal aerosol systems as a sink for atmospheric SO2

  • Harald Berresheim
  • Wolfgang Jaeschke
Article

Abstract

The chemical removal of SO2 in the presence of different aerosol systems has been investigated in laboratory experiments using a dynamic flow reactor. The aerosols consisted of wetted particles containing one of the following substances: MnCl2, Mn(NO3)2, MnSO4, CuCl2, Cu(NO3)2, CuSO4, FeCl3, NaCl. The SO2 removal rate R was measured as a function of the SO2 gas phase concentration (SO2)g, the spatial metal concentration CMe, and the relative humidity rH in the reactor. A first-order dependence with regard to (SO2)g was observed for each type of aerosol. For the Mn(II) and Cu(II) aerosols R was found to be a non-linear function of CMe except for MnSO4 and Cu(NO3)2 particles. The removal rate showed a significant increase with the relative humidity particularly when rH was close to the deliquescence point of the wetted particles. Among the Mn(II) and Cu(II) aerosols investigated Mn(NO3)2 was found to be most efficient for the chemical removal of SO2 at atmospheric background conditions, especially in haze and fog droplets. The results further indicate that the catalytic oxidation of S(IV) in such aerosol systems may be as efficient as its oxidation by H2O2 in cloud water.

Key words

Sulfur dioxide removal aerosol transition metal hydrogen peroxide flow reactor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, E., 1956, Zur Anionkatalyse der Autoxydation, Monatsh. f. Chemie 87, 113–119.Google Scholar
  2. Bäckström, H. L. J., 1934, Der Kettenmechanismus bei der Autoxydation von Natriumsulfitlösungen, Z. Phys. Chemie 25, 122–138.Google Scholar
  3. Baes, C. F.Jr. and Mesmer, R. E., 1976, The Hydrolysis of Cations, Wiley-Interscience, N.Y.Google Scholar
  4. Barrie, L. A. and Georgii, H. W., 1976, An experimental investigation of the absorption of sulphur dioxide by water drops containing heavy metal ions, Atmos. Environ. 10, 743–749.Google Scholar
  5. Bassett, W. and Parker, W. G., 1951, The oxidation of sulphurous acid, J. Chem. Soc. 47, 1540–1560.Google Scholar
  6. Beltz, N., Jaeschke, W. and Meixner, F. X., 1985, Gravimetric calibration of standard gases, Thermochimica Acta (in press).Google Scholar
  7. Berresheim, H., 1984, Reaktionskinetische Untersuchungen zum Abbau von SO 2 in Aerosolpartikeln und Wolkentröpfchen, Ph. D. Thesis, University of Frankfurt.Google Scholar
  8. Bunz, H. and Schöck, W., 1980, Beeinflussung der Partikelform durch Wechselwirkung zwischen Aerosol und gesättigtem Wasserdampf, in: W. Stöber and D. Hochrainer (Eds.), Proceedings of the 8th Conference on Aerosols in Science, Medicine and Technology: Physical and Chemical Properties of Aerosols, Gesellschaft f. Aerosolforschung, Schmallenberg, F.R.G., pp. 316–322.Google Scholar
  9. Cains, P. W. and Carabine, M. D., 1978, Oxidation of sulphur dioxide in aerosol droplets, catalysed by manganous sulphate, J. Chem. Soc. Faraday Trans. I 11; 2689–2702.Google Scholar
  10. Calvert, J. G., Lazrus, A., Kok, G. L., Heikes, B. G., Walega, J. G., Lind, J. and Cantrell, C. A., 1985, Chemical mechanisms of acid generation in the troposphere, Nature 317, 27–35.Google Scholar
  11. Charlson, R. J., Covert, D. S., Larson, T. V. and Waggoner, A. P., 1978, Chemical properties of tropospheric sulfur aerosols, Atmos. Environ. 12, 39–53.Google Scholar
  12. Cheng, R. T., Corn, M. and Frohliger, J. O., 1971, Contribution to the reaction kinetics of water soluble aerosols and SO2 in air at ppm concentrations, Atmos. Environ. 5, 987–1008.Google Scholar
  13. Clarke, A. G. and Radojevic, M., 1983, Chloride ion effects on the aqueous oxidation of SO2, Atmos. Environ. 17, 617–624.Google Scholar
  14. Clarke, A. G. and Williams, P. T., 1983, The oxidation of sulphur dioxide in electrolyte droplets, Atmos. Environ. 17, 607–615.Google Scholar
  15. Crump, J. G., Flagan, R. C. and Seinfeld, J. H., 1983, An experimental study of the oxidation of sulfur dioxide in aqueous manganese sulfate aerosols, Atmos. Environ. 17, 1277–1289.Google Scholar
  16. Cussler, E. L., 1980, Cluster diffusion in liquids, AIChE J 26, 43–51.Google Scholar
  17. Dasgupta, P. K., Mitchell, P. A. and West, P. W., 1979, Study of transition metal ion-S(IV) systems, Atmos. Environ. 13, 775–782.Google Scholar
  18. Davies, C. W., 1962, Ion Association, Butterworths, London.Google Scholar
  19. Dlugi, R., 1983, SO2-oxidation in aerosol particles and droplets, J. Aerosol Science 14, 292–297.Google Scholar
  20. Eriksen, T. E., 1969, Diffusion studies in aqueous solutions of sulfur dioxide, Chem. Eng. Sci., 24, 273–278.Google Scholar
  21. Franck, J. and Haber, F., 1931, Zur Theorie der Katalyse durch Schwermetallionen in wässriger Lösung und insbesondere zur Autoxydation der Sulfitlösungen, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. 13, 250–256.Google Scholar
  22. Freiberg, J. E. and Schwartz, S. E., 1981, Oxidation of SO2 in aqueous droplets: Mass transport limitation in laboratory studies and the ambient atmosphere, Atmos. Environ. 15, 1145–1154.Google Scholar
  23. Fuzzi, S., 1978, Study of iron (III) catalysed sulphur dioxide oxidation in aqueous solution over a wide range of pH, Atmos. Environ. 12, 1439–1442.Google Scholar
  24. Gmelin: Handbuch der Anorganischen Chemie, Springer, Berlin, 1958, 60 (B1), pp. 169, 270, 526; 1975, 56 (C3), p. 282; 1976, 56 (C6), pp. 99, 108.Google Scholar
  25. Graedel, T. E. and Weschler, C. J., 1981, Chemistry within aqueous atmospheric aerosols and raindrops, Rev. Geophys. Space Phys. 19, 505–539.Google Scholar
  26. Graedel, T. E., Weschler, C. J. and Mandich, M. L., 1985, Influence of transition metal complexes on atmospheric droplet acidity, Nature 317, 240–242.Google Scholar
  27. Hänel, G., 1976, The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, in: H. E. Landsberg and J. van Mieghem (Eds.), Advances in Geophysics 19, Academic Press, N.Y., pp. 74–188.Google Scholar
  28. Harrison, H., Larson, T. V. and Monkman, C. S., 1982, Aqueous phase oxidation of sulfites by ozone in the presence of iron and manganese, Atmos. Environ. 16, 1039–1041.Google Scholar
  29. Hegg, D. A., 1985, The importance of liquid-phase oxidation of SO2 in the troposphere, J. Geophys. Res. 90, 3773–3779.Google Scholar
  30. Hegg, D. A. and Hobbs, P. V., 1978, Oxidation of sulfur dioxide in aqueous systems with particular reference to the atmosphere, Atmos. Environ. 12, 242–253.Google Scholar
  31. Ho, W., Hidy, G. M. and Govan, R. M., 1974, Microwave measurements of the liquid water content of atmospheric aerosols, J. Appl. Met. 13, 871–879.Google Scholar
  32. Hoffmann, M. R. and Jacob, D. J., 1984, Kinetics and mechanisms of the catalytic oxidation of dissolved sulfur dioxide in aqueous solution: An application to nighttime fog water chemistry. in J. G. Calvert (ed.), SO 2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Ann Arbor Science, Boston, pp. 101–172.Google Scholar
  33. Ibusuki, T. and Barnes, H. M., 1984, Manganese (II) catalyzed sulfur dioxide oxidation in aqueous solution at environmental concentrations, Atmos. Environ. 18, 145–151.Google Scholar
  34. Jacob, D. J. and Hoffmann, M. R., 1983, The chemistry of nighttime urban fogs, in H. R. Pruppacher, R. G. Semonin and W. G. N. Slinn (eds.), Precipitation Scavenging, Dry Deposition, and Resuspension, Vol. 1, Elsevier, N.Y., pp. 149–157.Google Scholar
  35. Jaeschke, W., 1983, Problems and methods of trace gas measurements in the troposphere, in H. W. Georgii and W. Jaeschke (eds.), The Chemistry of the Unpolluted and Polluted Troposphere, Reidel, Dordrecht, pp. 3–38.Google Scholar
  36. Judeikis, H. S., Stewart, T. B. and Wren, A. G., 1978, Laboratory studies of heterogeneous reactions of SO2, Atmos. Environ. 12, 1633–1641.Google Scholar
  37. Junge, C. E. and Ryan, T. G., 1958, Study of the SO2 oxidation in solution and its role in atmospheric chemistry, Quart. J. Roy. Met. Soc. 84, 46–55.Google Scholar
  38. Kaplan, D. J., Himmelblau, D. M. and Kanaoka, C., 1981, Oxidation of sulfur dioxide in aqueous ammonium sulfate aerosols containing manganese as a catalyst, Atmos. Environ. 15, 763–773.Google Scholar
  39. Kelly, T. J., Stedman, D. H. and Kok, G. L., 1979, Measurements of H2O2 and HNO3 in rural air, Geophys. Res. Lett. 6, 375–378.Google Scholar
  40. Kleinmann, M. T., Phalen, R. F., Mannix, R., Azizian, M. and Walters, R., 1985, Influence o Fe and Mn ions on the incorporation of radioactive 35SO2 by sulfate aerosols, Atmos. Environ. 19, 607–610.Google Scholar
  41. Kok, G. L., 1980, Measurement of hydrogen peroxide in rainwater, Atmos. Environ. 14, 653–656.Google Scholar
  42. Li, S. M., 1985, A Theoretical and Experimental Study of Aerosol Acidity, M. S. Thesis, Florida State University, Tallahassee, FL, U.S.A.Google Scholar
  43. Low, R. D. H., 1969, A theoretical study of nineteen condensation nuclei, J. Rech. Atmos. 4, 65–78.Google Scholar
  44. Martin, L. R. and Damschen, D. E., 1981, Aqueous oxidation of sulfur dioxide by hydrogen peroxide at low pH, Atmos. Environ. 15, 1615–1621.Google Scholar
  45. Martin, L. R., 1984, Kinetic studies of sulfite oxidation in aqueous solution, in J. G. Calvert (Ed.) SO 2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Ann Arbor Science, Boston, pp. 63–100.Google Scholar
  46. Matteson, M. J., Stöber, W. and Luther, H., 1969, Kinetics of the oxidation of sulfur dioxide by aerosols of manganese sulfate, Ind. Eng. Chem. Fundam. 8, 677–687.Google Scholar
  47. May, K. R., 1973, The Collison nebulizer: description, performance and application, J. Aerosol Science 4, 235–243.Google Scholar
  48. Middleton, P., Kiang, C. S. and Mohnen, V. A., 1980, Theoretical estimates of the relative importance or various urban sulfate aerosol production mechanisms, Atmos. Environ. 14, 463–472.Google Scholar
  49. Möller, D., 1980, Kinetic model of atmospheric SO2 oxidation based on published data, Atmos. Environ. 14, 1067–1076.Google Scholar
  50. Novak, J. V. A., 1965, Polarographic-coulometric analyzers. Measurement of low concentrations of sulphur dioxide, Coll. Czech. Chem. Commun. 30, 2703–2716.Google Scholar
  51. Penkett, S. A., 1985, Laboratory studies of the multiphase SIV-SVI conversion rate, in: W. Jaeschke and V. A. Mohnen (Eds.), Chemistry of Multiphase Atmospheric Systems, Springer, Berlin (in press).Google Scholar
  52. Rahn, K. A., 1976, The Chemical Composition of the Atmospheric Aerosol, Technical Report, Graduate School of Oceanography, University of Rhode Island, Kingston, RI, U.S.A.Google Scholar
  53. Ratcliff, G. A. and Holdcroft, J. G., 1963, Diffusivities of gases in aqueous electrolyte solutions, Trans. Instn. Chem. Engrs. 41, 315–319.Google Scholar
  54. Robinson, R. A. and Stokes, R. H., 1970, Electrolyte Solutions, Butterworths, London.Google Scholar
  55. Rockland, L. B., 1960, Saturated salt solutions for static control of relative humidity between 5°C and 40°C, Analyt. Chem. 32, 1375–1376.Google Scholar
  56. Schwartz, S. E. and Freiberg, J. E., 1981, Mass transport limitation to the rate of reaction of gases in liquid droplets: Application to oxidation of SO2 in aqueous solutions, Atmos. Environ 15, 1129–1144.Google Scholar
  57. Schwartz, S. E., 1984, Gas-aqueous reactions of sulfur and nitrogen oxides in liquid-water clouds, in J. G. Calvert (ed.), SO 2, NO and NO2 Oxidation Mechanisms: Atmospheric Considerations, Ann Arbor Science, Boston, pp. 173–208.Google Scholar
  58. Shariari, S., Sarmiento, A. N. and Goodrich, F. C., 1972, The kinetics of growth of an aerosol in a flow reactor—I. Experimental, in G. M. Hidy (ed.), Aerosols and Atmospheric Chemistry, Academic Press, N.Y., pp. 67–73.Google Scholar
  59. Steele, R. L., Gertler, A. W., Katz, U., Lamb, D. and Miller, D. F., 1981, Cloud chamber studies of dark transformations of sulfur dioxide in cloud droplets, Atmos. Environ. 15, 2341–2352.Google Scholar
  60. Straubel, H., 1980, Observation of chemical reactions on single particles, in W. Stöber and D. Hochrainer (eds.), Proceedings of the 8th Conference on Aerosols in Science, Medicine and Technology: Physical and Chemical Properties of Aerosols, Gesellschaft f. Aerosolforschung, Schmallenberg, F.R.G., pp. 347–350.Google Scholar
  61. Szymanski, W. and Wagner, P. E., 1983, Aerosol size distribution during a condensational growth process. Measurements and comparison with theory, Atmos. Environ. 17, 2271–2276.Google Scholar
  62. Tang, I. N., Munkelwitz, H. R. and Davies, J. G., 1977, Aerosol growth studies—II. Preparation and growth measurements of monodisperse salt aerosols, J. Aerosol Science 8, 149–159.Google Scholar
  63. van Eldik, R., 1985, Transition metals as potential catalysts in atmospheric oxidation processes, in W. Jaeschke and V. A. Mohnen (eds.), Chemistry of Multiphase Atmospheric Systems, Springer, Berlin (in press).Google Scholar
  64. Winkler, P. and Junge, C., 1972, The growth of atmospheric aerosol particles as a function of the relative humidity. Part I: Method and measurements at different locations, J. Rech. Atmos. (Memorial Henri Dessens), 617–638.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Harald Berresheim
    • 1
  • Wolfgang Jaeschke
    • 1
  1. 1.Zentrum für Umweltforschung der J.-W.-Goethe-UniversitätFrankfurt am Main 1F.R.G.

Personalised recommendations