Journal of Atmospheric Chemistry

, Volume 1, Issue 4, pp 403–428 | Cite as

Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth

  • James F. Kasting
  • James B. Pollack
  • David Crisp


One-dimensional radiative-convective and photochemical models are used to examine the effects of enhanced CO2 concentrations on the surface temperature of the early Earth and the composition of the prebiotic atmosphere. Carbon dioxide concentrations of the order of 100–1000 times the present level are required to compensate for an expected solar luminosity decrease of 25–30%, if CO2 and H2O were the only greenhouse gases present. The primitive stratosphere was cold and dry, with a maximum H2O volume mixing ratio of 10−6. The atmospheric oxidation state was controlled by the balance between volcanic emission of reduced gases, photo-stimulated oxidation of dissolved Fe+2 in the oceans, escape of hydrogen to space, and rainout of H2O2 and H2CO. At high CO2 levels, production of hydrogen owing to rainout of H2O2 would have kept the H2 mixing ratio above 2×10−4 and the ground-level O2 mixing ratio below 10−11, even if no other sources of hydrogen were present. Increased solar UV fluxes could have led to small changes in the ground-level mixing ratios of both O2 and H2.

Key words

prebiotic atmosphere oxygen levels carbon dioxide levels surface temperature 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Augustsson, T. and Ramanathan, V., 1977, A radiative-convective model study of the CO2 climate problem,J. Atmos. Sci. 34, 448–451.Google Scholar
  2. Bar-Nun, A. and Chang, S., 1983, Photochemical reactions of carbon monoxide and water in Earth's primitive atmosphere,J. Geophys. Res. 88, 6662–6672.Google Scholar
  3. Bevington, P. R., 1969,Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  4. Borucki, W. J., 1983, Energy dissipation rate of terrestrial lightning, manuscript in preparation.Google Scholar
  5. Braterman, P. S., Cairns-Smith, A. G., and Sloper, R. W., 1983, Photooxidation of hydrated Fe+2 — significance for banded iron formations,Nature 303, 163–164.Google Scholar
  6. Burch, D. E., Gryvnak, D., Singleton, E. B., France, W. L., and Williams, D., 1962, Infrared Absorption by Carbon Dioxide, Water Vapor, and Minor Atmospheric Constituents, AFCRL-62-698.Google Scholar
  7. Canuto, V. M., Levine, J. S., Augustsson, T. R., and Imhoff, C. L., 1982, UV radiation from the young sun and oxygen and ozone levels in the prebiological paleoatmosphere,Nature 296, 816–820.Google Scholar
  8. Canuto, V. M., Levine, J. S., Augustsson, T. R., Imhoff, C. L., and Giampapa, M. S., 1983, The young Sun and the atmosphere and photochemistry of the early Earth,Nature 305, 281–286.Google Scholar
  9. Carver, J. H., 1981, Prebiotic atmospheric oxygen levels,Nature 292, 136–138.Google Scholar
  10. Cess, R. D. and Tiwari, S. N., 1972, Infrared radiative energy transfer in gases,Adv. Heat Transfer 8, 229–283.Google Scholar
  11. Cloud, P. E., 1972, A working model of the primitive earth,Amer. J. Science 272, 537–548.Google Scholar
  12. Cloud, P. E., 1973, Paleoecological significance of the banded iron formation,Econ. Geol. 68, 1135–1143.Google Scholar
  13. Dawson, G. L., 1980, Nitrogen fixation by lightning,J. Atmos. Sci. 37, 174–178.Google Scholar
  14. Fels, S. B., 1979, Simple strategies for inclusion of Voigt effects in infrared cooling rate calculations,Appl. Opt. 18, 2634–2637.Google Scholar
  15. Fels, S. B. and Schwarzkopf, M. D., 1980, An efficient, accurate algorithm for calculating CO2 15-μm band cooling rates,J. Geophys. Res. 86, 1205–1232.Google Scholar
  16. Fishman, J. and Crutzen, P. 1977, A numerical study of tropospheric photochemistry using a one-dimensional model,J. Geophys. Res. 82, 5897–5906.Google Scholar
  17. Garrels, R. M. and Mackenzie, F. T., 1971,Evolution of Sedimentary Rocks, Norton, New York.Google Scholar
  18. Garrels, R. M. and Perry, E. A., 1974, Cycling of carbon, sulfur, and oxygen through geologic time,The Sea 5, 303–336.Google Scholar
  19. Goldman, A. and Kyle, T. G., 1968, A comparison between statistical model and line calculation with application to the 9.6 μm ozone and the 2.7 μm water vapor bands,Appl. Opt. 7, 1167–1177.Google Scholar
  20. Gough, D. O., 1981, Solar interior structure and luminosity variations,Solar Phys.,74, 21–34.Google Scholar
  21. Hart, M. H., 1978, The evolution of the atmosphere of the earth,Icarus 33, 23–39.Google Scholar
  22. Henderson-Sellers, A., 1979, Clouds and the long-term stability of the earth's atmosphere and climate,Nature 279, 786–788.Google Scholar
  23. Hill, R. D., Rinker, R. G., and Wilson, H. D., 1980, Atmospheric nitrogen fixation by lightning,J. Atmos. Sci. 37, 179–192.Google Scholar
  24. Ho, W., Birnbaum, G., and Rosenberg, A., 1971, Far-infrared collision induced absorption in CO2. I. Temperature dependence,J. Chem. Phys. 55, 1028–1038.Google Scholar
  25. Holland, H. D., 1973, The oceans: A possible source of iron in iron formations,Econ. Geol. 68, 1169–1172.Google Scholar
  26. Howard, J. N., Burch, D. L., and William, D., 1956, Near-infrared transmission through synthetic atmospheres,J. Opt. Soc. Am. 46, 186–190.Google Scholar
  27. Hummel, J. R. and Kuhn, W. R., 1981, Comparison of radiative-convective models with constant and pressure dependent lapse rates,Tellus 33, 254–261.Google Scholar
  28. Ingersoll, A. P., 1969, The runaway greenhouse: A history of water on Venus,J. Atmos. Sci. 26, 1191–1198.Google Scholar
  29. Kasting, J. F., 1979, Evolution of oxygen and ozone in the Earth's atmosphere, PhD dissertation, University of Michigan, Ann Arbor, Mich.Google Scholar
  30. Kasting, J. F., 1982, Stability of ammonia in the primitive terrestrial atmosphere,J. Geophys. Res. 87, 3091–3098.Google Scholar
  31. Kasting, J. F., Liu, S. C., and Donahue, T. M., 1979, Oxygen levels in the prebiological atmosphere,J. Geophys. Res. 84, 3097–3107.Google Scholar
  32. Kasting, J. F. and Donahue, T. M., 1980, Evolution of atmospheric ozone,J. Geophys. Res.,85, 3255–3263.Google Scholar
  33. Kasting, J. F. and Walker, J. C. G., 1981, Limits on oxygen concentration in the prebiological atmosphere 3nd the rate of abiotic fixation of nitrogen,J. Geophys. Res. 86, 1147–1158.Google Scholar
  34. Kasting, J. F., Zahnle, K. J., and Walker, J. C. G., 1983, Photochemistry of methane in the Earth's early atmosphere,Precambrian Res. 20, 121–148.Google Scholar
  35. Kasting, J. F., Pollack, J. B., and Ackerman, T. P., 1984, Response of Earth's atmosphere to increases in solar flux and implications for loss of water from Venus,Icarus,57, 335–355.Google Scholar
  36. Kuhn, W. R. and Atreya, S. K., 1979, Ammonia photolysis and the greenhouse effect in the pirmordial atmosphere of the earth,Icarus 37, 207–213.Google Scholar
  37. Kuhn, W. R. and Kasting, J. F., 1983. The effects of increased CO2 concentrations on surface temperature of the early earth,Nature 301, 53–55.Google Scholar
  38. Lindzen, R. S. and Will, D. I., 1973, An analytic formula for heating due to ozone absorption,J. Atmos. Sci. 30, 513–515.Google Scholar
  39. Lindzen, R. S., Hou, A. Y., and Farrell, B. F., 1982, The role of convective model choice in calculating the climate impact of doubling CO2,J. Atmos. Sci. 39, 1189–1205.Google Scholar
  40. Lovelock, J. E. and Watson, A. J., 1982, The regulation of carbon dioxide and climate: Gaia or geochemistry,Planet. Space Sci. 30, 795–802.Google Scholar
  41. Lovelock, J. E. and Whitfield, M., 1982, Life span of the biosphere,Nature 296, 561–563.Google Scholar
  42. Malkmus, W., 1967, Random Lorentz band model with exponential-tailed S−1 line intensity distribution function,J. Opt. Soc. Am. 57, 323–329.Google Scholar
  43. Manabe, S. and Wetherald, R. T., 1967, Thermal equilibrium of the atmosphere with a given distribution of relative humidity,J. Atmos. Sci. 24, 241–259.Google Scholar
  44. Mastenbrook, H. J., 1968, Water vapor distribution in the stratosphere and high troposphere,J. Atmos. Sci. 25, 299–311.Google Scholar
  45. Moore, J. F., 1971, Infrared absorption of carbon dioxide at high densities with application to the atmosphere of Venus, Rep. X-630–72–48, NASA Goddard Space Flight Center, Greenbelt, Maryland.Google Scholar
  46. Mount, G. H., Rottman, G. J., and Timothy, J. G., 1980, The solar spectral irradiance 1200–2550 Å at solar maximum,J. Geophys. Res. 85, 4271–4274.Google Scholar
  47. Newman, M. J. and Rood, R. T., 1977, Implications of solar evolution for the earth's early atmosphere,Science 198, 1035–1037.Google Scholar
  48. North, G. R., 1975, Theory of energy-balance climate models,J. Atmos. Sci. 32, 2033–2043.Google Scholar
  49. Owen, T., Cess, R. D., and Ramanathan, V., 1979, Early Earth: An enhanced carbon dioxide greenhouse to compensate for reduced solar luminosity,Nature 277, 640–642.Google Scholar
  50. Pinto, J. P., Gladstone, C. R., and Yung, Y. L., 1980, Photochemical production of formaldehyde in the earth's primitive atmosphere,Science 210, 183–185.Google Scholar
  51. Pollack, J. B., Toon, O. B., and Boese, R., 1980, Greenhouse models of Venus' high surface temperature, as constrained by Pioneer Venus measurements,J. Geophys. Res. 85, 8223–8231.Google Scholar
  52. Ramanathan, V., 1976, Radiative transfer within the Earth's troposphere and stratosphere: A simplified radiative-convective model,J. Atmos. Sci. 33, 1330–1346.Google Scholar
  53. Roberts, R. E., Selby, J. E. A., and Biberman, L. M., 1976, Infrared continuum absorption by atmospheric water vapor in the 8–12 μm window,Appl. Opt. 15, 2085–2090.Google Scholar
  54. Rodgers, C. D. and Walshaw, C. D., 1966, The computation of infrared cooling rate in planetary atmospheres,Quart. J. Roy. Meteor. Soc. 92, 67–92.Google Scholar
  55. Rossow, W. B., Henderson-Sellers, A., and Weinreich, S. K., 1982, Cloud feed-back: A stabilizing effect for the early earth?,Science 217, 1245–1247.Google Scholar
  56. Sagan, C. and Mullen, G., 1972, Earth and Mars: Evolution of atmospheres and surface temperatures,Science 177, 52–56.Google Scholar
  57. Schatten, K. H. and Endal, A. S., 1982, The faint young sun-climate paradox: Volcanic influences,Geophys. Res. Lett. 9, 1309–1311.Google Scholar
  58. Thompson, B. A., Harteck, P., and Reeves, R. R. Jr., 1963, Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 Å,J. Geophys. Res. 68, 6431–6436.Google Scholar
  59. Towe, K. M., 1981, Environmental conditions surrounding the origin and early Archean evolution of life: A hypothesis,Precambian Res. 16, 1–10.Google Scholar
  60. Veizer, J., Compston, W., Hoefs, J. and Nielson, H., 1982, Mantle buffering of the early oceans,Naturwissenschaften 69, 173–180.Google Scholar
  61. Visconti, G., 1982, Radiative-photochemical models of the primitive terrestrial atmosphere,Planet. Space Sci. 30, 785–793.Google Scholar
  62. Walker, J. C. G., 1976, Implications for atmospheric evolution of the inhomogeneous accretion model of the origin of the Earth, in B. F.Windley (ed.),The Early History of the Earth, Wiley, New York, pp. 537–546.Google Scholar
  63. Walker, James C. G., 1977,Evolution of the Atmosphere, MacMillan, New York.Google Scholar
  64. Walker, J. C. G., 1982, Climatic factors on the Archean earth,Pageoph. 40, 1–11.Google Scholar
  65. Walker, J. C. G., 1983, Possible limits on the composition of the Archean ocean,Nature 302, 518–520.Google Scholar
  66. Walker, J. C. G., P. B.Hays, and J. F.Kasting, 1981, A negative feedback mechanism for the long-term stabilization of Earth's surface temperature,J. Geophys. Res. 86, 9776–9782.Google Scholar
  67. Wang, W. C. and P. H.Stone, 1980, Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model,J. Atmos. Sci. 37, 545–552.Google Scholar
  68. Yung, Y. L., 1976, A numerical method for calculating the mean intensity in an inhomogeneous Rayleigh scattering atmosphere,J. Quant. Spectrosc. Radiat. Transfer 16, 755–761.Google Scholar
  69. Yung, Y. L. and McElroy, M. B., 1979, Fixation of nitrogen in the prebiotic atmosphere,Science 203, 1002–1004.Google Scholar
  70. Zahnle, K. J. and Walker, J. C. G., 1982, The evolution of solar ultraviolet luminosity,Rev. Geophys. Space Phys. 20, 280–292.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • James F. Kasting
    • 1
  • James B. Pollack
    • 1
  • David Crisp
    • 2
  1. 1.NASA Ames Research CenterMoffett FieldU.S.A.
  2. 2.Geophysical Fluid Dynamics LaboratoryPrincetonU.S.A.

Personalised recommendations