Journal of Atmospheric Chemistry

, Volume 25, Issue 3, pp 307–325 | Cite as

Dimethylsulfide oxidation and the ratio of methanesulfonate to non sea-salt sulfate in the marine aerosol

  • G. P. Ayers
  • J. M. Cainey
  • H. Granek
  • C. Leck


A box model of DMS oxidation in the clean, low-NO x marine atmospheric boundary layer has been used to predict the latitude dependence of the aerosol methanesulfonate to non sea-salt sulfate ratio. The observed latitude dependence of this ratio in the Southern Hemisphere can be reproduced reasonably well if the full suite of reactions proposed by Yin et al. (1990a) is employed, and a strong temperature dependence is specified in the rates of decomposition of CH3SO2 and CH3SO3 radicals.

Key words

DMS oxidation marine aerosol box model cloud condensation nuclei non sea-salt sulfate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlbrechtB. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness, Science 245, 1227–1230.Google Scholar
  2. AndreaeM. O., ElbertW., and deMoraS. J., 1995: Biogenic sulfur emissions and aerosols over the tropical South Atlantic 3. Atmospheric dimethylsulfide, aerosols and cloud condensation nuclei, J. Geophys. Res. 100, 11335–11356.Google Scholar
  3. AyersG. P. and GalballyI. E., 1995: A preliminary estimate of boundary layer-free troposphere entrainment velocity, Baseline 92, Baseline Atmospheric Program Australia, Department of Environment, Sports and Territories, Bureau of Meteorology and CSIRO, Australia.Google Scholar
  4. AyersG. P., IveyJ. P., and GillettR. W., 1991: Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air, Nature 349, 404–406.Google Scholar
  5. AyersG. P., PenkettS. A., GillettR. W., BandyB., GalballyI. E., MeyerC. P., ElsworthC. M., BentleyS. T., and ForganB. W., 1992: Evidence for photochemical control of ozone concentrations in unpolluted marine air, Nature 360, 446–448.Google Scholar
  6. AyersG. P., PenkettS. A., GillettR. W., BandyB., GalballyI. E., MeyerC. P., ElsworthC. M., BentleyS. T., and ForganB. W., 1996: The annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania, J. Atmos. Chem. 23, 221–252.Google Scholar
  7. BandyA. R., ScottD. L., BlomquistB. M., ChenS. M. and ThorntonD. C., 1992: Low yields from dimethyl sulfide oxidation in the marine boundary layer, Geophys. Res. Lett. 19, 1125–1127.Google Scholar
  8. BaroneS. B., TurnipseedA. A., and RavishankaraA. R., 1995: Role of adducts in the atmospheric oxidation of dimethyl sulfide, Faraday Discuss. 100, 39–54.Google Scholar
  9. BatesT. S., ClineJ. D., GammonR. H., and Kelly-HansenS. R., 1987: Regional and seasonal variations in the flux of oceanic dimethylsulfide to the atmosphere, J. Geophys. Res. 92, 2930–2938.Google Scholar
  10. BatesT. S., LambB. K., GuentherA., DignonJ., and StoiberR. E., 1992a: Sulfur emissions to the atmosphere from natural sources, J. Atmos. Chem. 14, 325–337.Google Scholar
  11. BatesT. S., CalhounJ. A., and QuinnP. K., 1992b: Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the South Pacific ocean, J. Geophys. Res. 97, 9859–9865.Google Scholar
  12. BatesT. S., KellyK. C., and JohnsonJ. E., 1993: Concentrations and fluxes of dissolved biogenic gases (DMS, CH4, CO, CO2) in the equatorial Pacific during the SAGA3 experiment, J. Geophys. Res. 98, 16969–16977.Google Scholar
  13. BatesT. S., KieneR. P., WolfeG. V., MatraiP. A., ChavezF. P., BuckK. R., BlomquistB. W., and CuhelR. L., 1994: The cycling of sulfur in surface seawater of the northeast Pacific, J. Geophys. Res. 99, 7835–7843.Google Scholar
  14. BatesT. S., KellyK. C., JohnsonJ. E., and GammonR. H., 1995: Regional and seasonal variations in the flux of oceanic carbon monoxide to the atmosphere, J. Geophys. Res. 100, 23093–23101.Google Scholar
  15. BerresheimH., AndreaeM. O., AyersG. P., GillettR. W., MerrillJ. T., HarrisV. J., and ChameidesW. L., 1990: Airborne measurements of dimethylsulfide, sulfur dioxide and aerosol ions over the Southern Ocean south of Australia, J. Atmos. Chem. 10, 341–370.Google Scholar
  16. BoersR., AyersG. P., and GrasJ. L., 1994: Coherence between seasonal variation in satellite-derived cloud optical depth and boundary layer CCN concentrations at a mid-latitude southern hemisphere station, Tellus 48B, 123–131.Google Scholar
  17. BoucherO. and RodheH., 1994: The sulfate-CCN-cloud albedo effect: a sensitivity study, Report CM-83, International Meteorological Institute, Stockholm University, Stockholm, ISSN 0280–445X, 19 pp.Google Scholar
  18. BoucherO. and LohmannU., 1995: The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models, Tellus 47B, 281–300.Google Scholar
  19. CharlsonR. J., LovelockJ. E., AndreaeM. O., and WarrenS. G., 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate, Nature 326, 655–661.Google Scholar
  20. DerwentR. G. and JenkinM. E., 1990: Hydrocarbon involvement in photochemical ozone formation in Europe, AERE Technical report R13736, AERE, Harwell, Oxfordshire, U.K.Google Scholar
  21. EricksonD. J., GhanS. J., and PennerJ. E., 1990: Global ocean-to-atmosphere dimethyl sulfide flux, J. Geophys. Res. 95, 7543–7552.Google Scholar
  22. GabricA. J., MurrayN., StoneL., and KohlM., 1993: Modelling the production of dimethylsulphide during a phytoplankton bloom, J. Geophys. Res. 98, 22805–22816.Google Scholar
  23. GalballyI. E. and RoyC. R., 1980: Destruction of ozone at the earth's surface, Q. J. R. Met. Soc. 106, 599–620.Google Scholar
  24. GillettR. W., AyersG. P., IveyJ. P., and GrasJ. L., 1993: Measurement of dimethylsulfide, sulfur dioxide, methanesulfonic acid and non-sea-salt sulfate at Cape Grim baseline station, in: G.Restelli and G.Angeletti (eds), Dimethylsulfide, Oceans, Atmosphere and Climate, Kluwer Acad. Publ., Dordrecht, pp. 117–128.Google Scholar
  25. GoodA. and ThynneJ. C. J., 1967: Reactions of free radicals with sulphur dioxide, J. Chem. Soc. Faraday Trans. 63, 2708–2719.Google Scholar
  26. HertelO., ChristensenJ., and HovØ., 1994: Modelling of the end products of the chemical decomposition of DMS in the marine boundary layer, Atmos. Environ. 28, 2431–2449.Google Scholar
  27. HuebertB. J., HowellS., LajP., JohnsonJ. E., BatesT. S., QuinP. K., YegorovV., ClarkeA. D., and PorterJ. N., 1993: Observations of the atmospheric sulfur cycle on SAGA3, J. Geophys. Res. 98, 16985–16995.Google Scholar
  28. HuebertB. J., WylieD. J., ZhuangL., and HeathJ. A., 1996: Production and loss of methane-sulfonate and non-sea salt sulfate in the equatorial Pacific marine boundary layer, Geophys. Res. Lett. 23, 737–740.Google Scholar
  29. HynesA. J., WineP. H., and SemmesD. H., 1986: Kinetics and mechanism of OH reaction with organic sulfides, J. Phys. Chem. 90, 4148–4156.Google Scholar
  30. JohnsonJ. E., KoropalovV. M., PickeringK. E., ThompsonA. M., BondN., and ElkinsJ. W., 1993: Third-Soviet-American gases and aerosols (SAGA3) experiment: overview and meteorological and oceanographic conditions, J. Geophys. Res. 98, 16893–16908.Google Scholar
  31. KogaS. and TanakaH., 1993: Numerical study of the oxidation process of dimethylsulfide in the marine atmosphere, J. Atmos. Chem. 17, 201–228.Google Scholar
  32. KogaS. and TanakaH., 1996: Simulation of seasonal variations of sulfur compounds in the remote marine atmosphere, J. Atmos. Chem. 23, 163–192.Google Scholar
  33. LeckC., LarssonU., BåganderL. E., JohanssonS., and HajduS., 1990: DMS in the Baltic Sea-Annual variability in relation to biological activity, J. Geophys. Res. 95, 3353–3363.Google Scholar
  34. LinX. and ChameidesW. L., 1993: CCN formation from DMS oxidation without SO2 acting as an intermediate, Geophys. Res. Lett. 20, 579–582.Google Scholar
  35. LuriaM. and SieveringH., 1991: Heterogeneous and homogeneous oxidation of SO2 in the remote marine atmosphere, Atmos. Environ. 25A, 1489–1496.Google Scholar
  36. MelloukiA., JourdainJ. L., and LeBrasG., 1988: Discharge flow study of the CH3S+NO2 reaction mechanism using Cl+CH3SH as the CH3S source, Chem. Phys. Lett. 148, 231–236.Google Scholar
  37. PandisS. N., RussellL. M., and SeinfeldJ. H., 1995: Reply to: Comment on ‘The relationship between DMS flux and CCN concentration in remote marine regions' by F. Raes, F. and R. Van Dingenen, J. Geophys. Res. 100, 14357–14358.Google Scholar
  38. Plane, J. M. C., 1987: Gas-phase oxidation of biogenic sulfur compounds: a review, in: E. S. Saltzman and W. J. Cooper (eds), Biogenic Sulfur in the Environment, ACS Symposium Series No. 393.Google Scholar
  39. RaesF. and VanDingenenR., 1995: Comment on ‘The relationship between DMS flux and CCN concentration in remote marine regions' by S. N. Pandis, L. M. Russell, and J. H. Seinfeld, J. Geophys. Res. 100, 14355–14356.Google Scholar
  40. SaltelliA. and HjorthJ., 1995: Uncertainty and sensitivity analyses of OH-initiated dimethylsulfide (DMS) oxidation kinetics, J. Atmos. Chem. 21, 187–221.Google Scholar
  41. SaltzmanE. S., SavoieD. L., ProsperoJ. M., and ZikaR. G., 1986: Methane sulfonic acid and non-sea-salt sulfate in Pacific air: Regional and seasonal variations, J. Atmos. Chem. 4, 227–240.Google Scholar
  42. SavoieD. L. and ProsperoJ. M., 1989: Comparison of oceanic and continental sources of non-sea-salt sulphate over the Pacific Ocean, Nature 339, 685–689.Google Scholar
  43. SchwartzS. E. and WarneckP., 1995: Units for use in atmospheric chemistry, Pure Appl. Chem. 67, 1377–1406.Google Scholar
  44. SieveringH., BoatmanJ., GallowayJ., KeeneW., KimY., LuriaM., and RayJ., 1991: Heterogeneous sulfur conversion in sea-salt aerosol particles: the role of aerosol water content and size distribution, Atmos. Environ. 25A, 1479–1487.Google Scholar
  45. SpiroP. A., JacobD. J., and LoganJ. A., 1992: Global inventory of sulfur emissions with 1°×1° resolution, J. Geophys. Res. 97, 6023–6036.Google Scholar
  46. ThompsonA. M., JohnsonJ. E., TorresA. L., BatesT. S., KellyK. C., AtlasE., GreenbergJ. P., DonahueN. M., YvonS. A., SaltzmanE. S., HeikesB. G., MosherB. W., ShashkovA. A., and YegorovV. I., 1993: Ozone observations and a model of the marine boundary layer photochemistry during SAGA3, J. Geophys. Res. 98, 16955–16968.Google Scholar
  47. TorresA. L. and ThompsonA. M., 1993: Nitric oxide in the equatorial Pacific boundary layer: SAGA3 measurements, J. Geophys. Res. 98, 16949–16954.Google Scholar
  48. ToumiR., 1994: BrO as a sink for dimethylsulfide in the marine atmosphere, Geophys. Res. Lett. 21, 117–120.Google Scholar
  49. TurnerS. M., MalinG., LissP. S., HarbourD. S., and HolliganP. M., 1988: The seasonal variation of dimethyl sulfide and dimethylsulfoniopropionate concentrations in near-shore waters, Limnol. Oceanogr. 33, 364–375.Google Scholar
  50. TurnipseedA. A. and RavishankaraA. R., 1993: The atmospheric oxidation of dimethylsulfide: elementary steps in a complex mechanism, in: G.Restelli and G.Angeletti (eds), Dimethylsulfide: Oceans, Atmosphere and Climate, Kluwer Acad. Publ., Dordrecht, Norwell, Mass., pp. 185–195.Google Scholar
  51. VanWeeleM. and DuynkerkeP. G., 1993. Effect of clouds on the photodissociation of NO2, observations and modelling, J. Atmos. Chem. 16, 231–255.Google Scholar
  52. YinF., GrosjeanD., and SeinfeldJ. H., 1990a: Photooxidation of dimethylsulfide and dimethyldisulfide: mechanism development, J. Atmos. Chem. 11, 309–364.Google Scholar
  53. YinF., GrosjeanD., FlaganR. C., and SeinfeldJ. H., 1990b: Photooxidation of dimethylsulfide and dimethyldisulfide: mechanism evaluation, J. Atmos. Chem. 11, 365–399.Google Scholar
  54. YvonS. A., SaltzmanE. S., CooperD. J., Bates and ThompsonA. M., 1996: Atmospheric sulfur cycling in the tropical Pacific marine boundary layer (12°S, 135°W): A comparison of filed data and model results 1. Dimethylsulfide, J. Geophys. Res. 101, 6899–6909.Google Scholar
  55. ZafiriouO. C., McFarlandM., and BromundR. H., 1980: Nitric oxide in seawater, Science 207, 637–639.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • G. P. Ayers
    • 1
  • J. M. Cainey
    • 1
  • H. Granek
    • 1
  • C. Leck
    • 2
  1. 1.Division of Atmospheric ResearchCSIROAspendaleAustralia
  2. 2.Department of MeteorologyStockholm UniversitySweden

Personalised recommendations