Journal of Atmospheric Chemistry

, Volume 25, Issue 2, pp 215–226 | Cite as

Accuracy of ozonesonde measurements in the troposphere

  • S. J. Reid
  • G. Vaughan
  • A. R. W. Marsh
  • H. G. J. Smit


Measurements of atmospheric ozone at concentrations typical of the free troposphere have been compared for ECC sondes and a UV-absorption photometer, using a Bendix chemiluminescent analyser as a transfer standard. Comparisons were conducted in the laboratory and in the tropospheric part of the atmosphere. It was found that the measurements agreed to within 4% provided that the background current for the ECC sonde was measured before exposure to ozone in the preparation procedure, and was assumed to be constant throughout the sonde flight. These results confirm those of earlier experiments and mean that the methods currently used to correct for the background current in the troposphere need to be revised.

Key words

ECC ozone troposphere Bendix intercomparison 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Kerr, J. B., Fast, H., McElroy, C. T., Oltmans, S. J., Lathrop, J. A., Kyro, E., Paukkunen, A., Claude, H., Köhler, U., Sreedharan, C. R., Takao, T., and Tsukagoshi, Y., 1994: The 1991 WMO International Ozonesonde Intercomparison at Vanscoy, Canada, Atmos. Ocean 32 (4), 685–716.Google Scholar
  2. Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, J. A., and Opperman, D. P., 1995: Electrochemical concentration cell performance evaluation during STOIC, J. Geophys. Res. 100, 9231–9244.Google Scholar
  3. Komhyr, W. D., 1986: Operations Handbook: Ozone measurements to 40 km altitude with mode 4A electrochemical concentration cell (ECC) ozonesondes (used with 1680-Mhr radiosondes), NOAA Technical Memorandum ERL ARL-149.Google Scholar
  4. Komhyr, W. D. and Harris, T. B., 1971: Development of an ECC ozonesonde, NOAA Technical Report ERL 200-APCL 18.Google Scholar
  5. Komhyr, W. D., 1969: Electrochemical concentration cells for gas analysis, Ann. Geophys. 25, 203–210.Google Scholar
  6. Logan, J. A., 1985: Tropospheric ozone: seasonal behaviour, trends and anthropogenic influence, J. Geophys. Res. 90, 10463–10482.Google Scholar
  7. Proffitt, M. H. and McLaughlin, R. J., 1983: Fast-response dual-beam UV-absorption ozone photometer suitable for use on stratospheric balloons, Rev. Sci. Instrum. 54, 1719–1728.Google Scholar
  8. Smit, H. G. J., Strater, W., Kley, D., and Proffitt, M. H., 1994: The evaluation of ECC-ozonesondes under quasi flight conditions in the Environmental simulation chamber at Julich, Proc. Eurotrac Symposium.Google Scholar
  9. Smit, H. G. J., Strater, W., and Kley, D., 1993: Comparison of ECC-ozonesondes and UV-photometer, Technical Memorandum, KFA Julich, September 1993.Google Scholar
  10. Thornton, D. C. and Niazy, N., 1982: Sources of background current in the ECC ozonesonde: Implications for total ozone measurements, J. Geophys. Res. 87, 8953.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • S. J. Reid
    • 1
  • G. Vaughan
    • 1
  • A. R. W. Marsh
    • 2
  • H. G. J. Smit
    • 3
  1. 1.Physics DepartmentUniversity of WalesAberystwythWales, U.K.
  2. 2.Atmospheric Chemistry Research UnitImperial CollegeAscotU.K.
  3. 3.Institut für Chemie der Belasteten Atmosphäre (ICG-2)Forschungszentrum JülichJülichGermany

Personalised recommendations