Advertisement

Journal of Atmospheric Chemistry

, Volume 25, Issue 2, pp 201–214 | Cite as

Natural and anthropogenic C2 to C6 hydrocarbons in the central-eastern Venezuelan atmosphere during the rainy season

  • Loreto Donoso
  • Rodrigo Romero
  • Alberto Rondón
  • Emmanuel Fernandez
  • Pedro Oyola
  • Eugenio Sanhueza
Article

Abstract

The levels of low molecular weight hydrocarbons were measured at pristine sites and rural locations affected by hydrocarbon emissions from oil and gas producing fields in Venezuela. At the clean sites, lower concentrations of C2 to C6 alkanes were observed, whereas, in comparison with remotes sites, very much higher levels were measured at the polluted sites. Alkenes present relatively high concentrations, with isoprene being the most abundant, all over the study region. The main sources of alkenes are likely to be natural, mainly from vegetation. The levels of alkanes recorded at the clean sites and the alkene levels found everywhere in the region are in agreement with the values reported for other clean sites in the tropics. The increase of ozone production capacity due to the anthropogenic emissions of alkanes from oil and gas fields was estimated. Due to the presence in the atmosphere of important amounts of naturally emitted isoprene, ethene and propene, which makes a substantial contribution to the reactivity of the hydrocarbon mixture, a small increase (<5%) was estimated to occur in the capacity of the ozone production at a regional scale during the rainy season.

Key words

nonmethane hydrocarbons isoprene tropical atmosphere oil field emissions potential ozone formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andronache, C., Chameides, W. L., Rodgers, M. O., Martínez, J., Zimmerman, P., and Greenberg, J., 1994: Vertical distribution of isoprene in the lower boundary layer of the rural and urban southern United States, J. Geophys. Res. 99, 16,989–16,999.Google Scholar
  2. Apel E. C. and Calvert, J. G., 1993: The non-methane hydrocarbon intercomparison experiment. Atmos. Chem. Div., NCAR, USA. Results presented at the International Symposium on Global Atmospheric Chemistry, Fuji-Yoshida, Japan, 5–9 Sept. 1994.Google Scholar
  3. Atkinson, R., 1985: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 85, 69–201.Google Scholar
  4. Atkinson, R., Baulch, D. L., Cox, R. A., HampsonJr., R. F., Kerr, J. A., and Troe, J., 1992: Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement IV, Atmos. Environ. 26A, 1187–1230.Google Scholar
  5. Ayers, G. P. and Gillett, R. W., 1988: Isoprene emissions from vegetation and hydrocarbon emissions from bushfires in tropical Australia, J. Atmos. Chem. 7, 177–190.Google Scholar
  6. Bonsang, B., Kanakidou, M., Lambert, G., Monfray, P., 1988: The marine source of C2−C6 aliphatic hydrocarbons. J. Atmos. Chem. 6, 3–20.Google Scholar
  7. Bonsang, B., Kanakidou, M., and Lambert, G., 1990: NMHC in the marine atmosphere: Preliminary results of monitoring at Amsterdam Island, J. Atmos. Chem. 11, 169–178.Google Scholar
  8. Bonsang, B., Lambert, G., and Boissard, C., 1991: Light hydrocarbon emissions from African savannah burnings, in: J., Levine (ed.), Global Biomass Burning, MIT Press, Cambridge, Mass., pp. 126–132.Google Scholar
  9. Bottenheim, J. W. and Shepherd, M., 1995: C2−C6 hydrocarbon measurements at four rural locations across Canada, Atmos. Environ. 29, 647–664.Google Scholar
  10. Carter, W. P. L., 1991: Development of ozone reactivity scales for volatile organic compounds, EPA Rep., 84 pp., Atmos. Res. and Exposure Assessment Lab., Office of Res. and Dev., Enviromental Protection Agency, Research Triangle Park. N.C.Google Scholar
  11. Chameides, W. L., Fehsenfeld, F., Rodgers, M. O., Cardelino, C., Martínez, J., Parrish, D., Lonneman, W., Lawson, D. R., Rasmussen, R. A., Zimmerman, P., Greenberg, J., Middleton, P., and Wang, T., 1992: Ozone precursor relationships in the ambient atmosphere, J. Geophys. Res. 97, 6037–6055.Google Scholar
  12. de Serves C., Rondón, A., and Oyola, P., 1995: Photochemical studies in the savannah boundary layer during the wet season, Atmos. Environ., submitted.Google Scholar
  13. Donahue, N. and Prinn, R., 1990: Nonmethane hydrocarbon chemistry in the remote marine boundary layer, J. Geophys. Res. 95, 18387–18411.Google Scholar
  14. Donahue, N. and Prinn, R., 1993: In situ nonmethane hydrocarbon measurements on SAGA 3, J. Geophys. Res. 98, 16915–16932.Google Scholar
  15. Ehhalt, D. H., Schmidt, U., Zander, R., Demoulin, P., and Rinsland, C.P., 1991: Seasonal cycle and secular trend of the total and tropospheric column abundance of ethane above the Jungfraujoch, J. Geophys. Res. 96, 4985–4994.Google Scholar
  16. Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A. B., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P., 1992: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biocheochem. Cycles 6 389–430.Google Scholar
  17. Greenberg, J. P., Zimmerman, P. R., and Chatfield, R. B., 1985: Hydrocarbons and carbon monoxide in African savannah air, Geophys. Res. Lett. 12, 113–116.Google Scholar
  18. Gregory, G. L., Harris, R. C., Talbot, R. W., Garstang, M., Andreae, M. O., Hinton, R. R., Browell, E. V., Beck, S. M., Sebacher, D. I., Khalil, M. A. K., Ferek, R. J., and Harris, S. V., 1986: Air chemistry over the tropical forest of Guyana, J. Geophys. Res. 91, 8603–8612.Google Scholar
  19. Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, Ch., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P., 1995: A global model of natural volatile organic compound emissions, J. Geophys. Res. 100, 8873–8892.Google Scholar
  20. Hahn, J., 1994: Nonmethane hydrocarbon, methane and carbon monoxide interlaboratory comparison in TOR. EUROTRAC subproject TOR. Fraunhofer Institut fur Atmospharische Umweltforschung IFU, Garmish-Partenkinrchen, Germany, March 1994.Google Scholar
  21. Khalil, M. A. K. and Rasmussen, R. A., 1994: Global decrease in atmospheric carbon monoxide concentration, Nature 370, 639–641.Google Scholar
  22. Lamontagne, R., Swinnerton, J., and Linnebom, V., 1974: C1−C4 hydrocarbons in the North and South Pacific, Tellus 26, 71–77.Google Scholar
  23. Novelli, P. C., Masarie, K. A., Tans, P. P., and Lang, P. M., 1994: Recent changes in atmospheric carbon monoxide, Science 263, 1587–1590.Google Scholar
  24. Octavio, K. H., Arrocha, A., and Sanhueza, E., 1987: Low nocturnal atmospheric dispersion capacity of the Venezuelan Savannah, Tellus 39B, 286–292.Google Scholar
  25. Plass, C., Johnen, F. J., Koppmann, R., and Rudolph, J., 1990: The latitudinal distribution of NMHC in the Atlantic and their fluxes into the atmosphere, in: G., Restelli and G., Angeletti (eds), Physico-chemical Behaviour of Atmospheric Pollutants, Kluwer Academic, Boston, Mass., pp. 663–668.Google Scholar
  26. Plass-Dülmer, C., Koppmann, R., Ratte, M., and Rudolph, J., 1995: Light nonmethane hydrocarbons in seawater, Global Biogeochem. Cycles 9, 79–100.Google Scholar
  27. Rasmussen, R. A. and Khalil, M. A. K., 1988: Isoprene over the Amazon Basin, J. Geophys. Res. 93, 1417–1421.Google Scholar
  28. Romero, R., 1995: The first laboratory intercomparison of light hydrocarbons in EMEP, EMEP/CCC-Report 2/95, Norwegian Institute for Air Research, Postboks 100, N-2007 Kjeller, Norway.Google Scholar
  29. Rudolph, J. and Ehhalt, D. H., 1981: Measurements of C2−C5 hydrocarbons over the North Atlantic, J. Geophys. Res. 86, 11958–11964.Google Scholar
  30. Sanhueza, E. and Santana, M., 1994: Atmospheric wet depositions in Tropical America, Israel J. Chem. 34, 327–334.Google Scholar
  31. Sanhueza, E., Arias, M. C., Fernandez, E., Escalona, L., and Rondón A., 1995: Ozone measurements in the Venezuelan savannah region, paper presented at the WMO/IGAC Conference, Beijing, October 1995.Google Scholar
  32. Sanhueza, E., Octavio, K. H., and Arrocha, A., 1985: Surface ozone measurements in the Venezuelan tropical savannah, J. Atmos. Chem. 2, 377–385.Google Scholar
  33. Sanhueza, E., Fraser, P., and Zander, R., 1994: Source gases: Trends and budgets, in Scientific Assessment of Ozone Depletion: 1994, WMO/UNEP, WMO Report No.37, 2.1–2.38.Google Scholar
  34. Sanhueza, E., Figueroa, L., and Santana, M., 1996, Atmospheric formic and acetic acids in Venezuela, Atmos. Environ. 30, 1861–1873.Google Scholar
  35. Shaw, R., Crittenden, A., Stevens, R., Cronn, D., and Titov, V., 1983: Ambient concentrations of hydrocarbons from conifers in atmospheric gases and aerosols particles measured in Soviet Georgia, Environ. Sci. Technol. 17, 389–395.Google Scholar
  36. Schmidbauer, N. and Oehme, M., 1985: Analysis of light hydrocarbons (C2−C5) at ppt levels by high resolution chromatography, JHRC & CC 8, 404–406.Google Scholar
  37. Schmidbauer, N. and Oehme, M., 1986: Improvement of a cryogenic preconcentration unit for C2−C6 hydrocarbons in ambient air at PPT levels, JHRC & CC 9, 503–505.Google Scholar
  38. Yokouchi, Y. and Ambe, Y., 1988: Diurnal variations of atmospheric isoprene and monoterpene hydrocarbonsin an agricultural area in summertime, J. Geophys. Res. 93, 3751–3759.Google Scholar
  39. Zimmerman, P. R., Greenberg, J. P., and Westberg, C. E., 1988: Measurements of atmospheric hydrocarbons and biogenic emission fluxes in the Amazon Boundary Layer, J. Geophys. Res. 93, 1407–1416.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Loreto Donoso
    • 1
  • Rodrigo Romero
    • 2
  • Alberto Rondón
    • 1
  • Emmanuel Fernandez
    • 1
  • Pedro Oyola
    • 2
  • Eugenio Sanhueza
    • 1
  1. 1.Atmospheric Chemistry Lab.IVICCaracasVenezuela
  2. 2.Air Pollution Lab., ITMStockholm UniversitySweden

Personalised recommendations