Journal of Atmospheric Chemistry

, Volume 25, Issue 2, pp 115–148 | Cite as

TROPOZ II: Global distributions and budgets of methane and light hydrocarbons

  • C. Boissard
  • B. Bonsang
  • M. Kanakidou
  • G. Lambert


One hundred atmospheric samples were collected aboard the French Caravelle research aircraft, during the TROPOZ II experiment (January 1991). Tropospheric meridional distributions versus height were then derived from 70° N to 60° S and between 0.25 km and 11 km for methane, acetylene, ethane and propane. Areas of significant emissions were identified over northern latitudes with, for acetylene, maximum mixing ratios in the north (1.896 ppbv) more than 70 times higher than in background southern latitudes (0.025 ppbv). The influence of emissions from biomass burning was also obvious in the tropical boundary layer. Significant dynamic phenomena led to high mixing ratio zones above 8 or 10 km even for the most reactive hydrocarbons.

For the first time, simultaneous assessment of global tropospheric contents of several light hydrocarbons was carried out. Using TROPOZ II data (January 1991) and STRATOZ III data (June 1984) collected by Rudolph (1988) during similar aircraft flights in 1988, the following tropospheric loads (in Tg-compound) were estimated, in January 1991 and June 1984, respectively: 1.1 and 0.4 for acetylene, 5.0 and 3.9 for ethane, 3.6 and 1.4 for propane and 3545 for methane in January only. According to our results, 40 to 65% of acetylene and alkanes are oxidized in the tropics. In addition, by computing the annual tropospheric sink of acetylene and alkanes, an evaluation of their annual global fluxes was performed. The figures are, in Tg-compound y-1 with an uncertainty of 80% to an order of magnitude, based on January and June data, respectively: 10 and 6.6 for acetylene, 16.3 and 17.6 for ethane and 52.3 and 26.5 for propane.

Key words

NMHC budget tropospheric distributions methane budget TROPOZ II experiment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aselman, I. and Crutzen, P. J., 1989: Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, J. Atmos. Chem. 8, 307–358.Google Scholar
  2. Blake, D. R., Rowland, F. S., 1986: Global atmospheric mixing ratios and sources strength of ethane, Nature 321, 231–233.Google Scholar
  3. Boissard, C., 1992: Distributions troposphériques globales des hydrocarbures légers: de l'expérimentation à la modélisation, PhD, Paris VII University.Google Scholar
  4. Bonsang, B. and Lambert, G., 1985. Nonmethane hydrocarbons in an oceanic atmosphere, J. Atmos. Chem. 2, 257–271.Google Scholar
  5. Bonsang, B., Boissard, C., LeCloarec, M. F., Rudolph, J., and Lacaux, J. P., 1995: Methane, carbon monoxide and light nonmethane hydrocarbon emissions from African savanna burnings during the FOS/DECAFE experiment. J. Atmos. Chem. 22, 149–162.Google Scholar
  6. Born, M., Dorr, H., and Levin, I., 1990: Methane consumption in aerated soils of the temperate zone, Tellus 42B, 2–8.Google Scholar
  7. Bottenheim, J. W. and Shepherd, M. F., 1995: C2−C6 hydrocarbon measurements at four rural locations across Canada, Atmos. Environ. 29, 647–664.Google Scholar
  8. Cicerone, R. J. and Oremland, R. S., 1988: Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles 2, 299–327.Google Scholar
  9. Cronn, D. R. and Nutmagul, W., 1982: Analysis of atmospheric hydrocarbons during winter MONEX, Tellus 34, 159–165.Google Scholar
  10. Ehhalt, D. H., Rudolph, J., Meixner, F. X., and Schmidt, U., 1985: Measurements of selected C2−C5 hydrocarbons in the background troposphere: Vertical and latitudinal variations, J. Atmos. Chem. 3, 29–52.Google Scholar
  11. Graedel, T. E., 1978: Chemical Compounds in the Atmosphere, Academic Press Orlando.Google Scholar
  12. Greenberg, P. J. and Zimmerman, P. R., 1984: Nonmethane hydrocarbons in remote tropical continental and marine atmosphere, J. Geophys. Res. 89, 4767–4778.Google Scholar
  13. Greenberg, P. J., Zimmerman, P. R., and Chatfield, R. B., 1985. Hydrocarbons and carbon monoxide in African savannah air, Geophys. Res. Lett. 12, 112–1156.Google Scholar
  14. Heimann, M. and Keeling, C. D., 1989: A three-dimensional model of atmospheric CO2 transport based on observed winds: 2 model description and simulated tracer experiments. Geophys. Mono. 55, 237–275.Google Scholar
  15. Hov, O., Penkett, I. S., Isaksen, I. S. A., and Semb, A., 1984: Organic gases in the Norwegian Arctic, Geophys. Res. Lett. 11, 425–428.Google Scholar
  16. Hov, O., Schmidbauer, N., and Oehme, M., 1991: C2−C5 hydrocarbons in rural south Norway, Atmos. Environ. 25A, 1981–1999.Google Scholar
  17. Hov, O., 1992: Atmospheric concentrations of nonmethane hydrocarbons at a north European coastal site, J. Atmos. Chem. 14, 515–526.Google Scholar
  18. Jobson, B. T., Wu, Z., Niki, H., and Barrie, L. A., 1994: Seasonal trends of isoprene, C2−C5 alkanes and acetylene at a remote boreal site in Canada, J. Geophys. Res. 99, 1589–1599.Google Scholar
  19. Kanakidou, M., 1988: Contribution à l'étude des sources des hydrocarbures légers non méthaniques dans l'atmosphère, thèse de doctorat, Université de Paris VII.Google Scholar
  20. Kanakidou, M., Bonsang, B., and Lambert, G., 1989: Light hydrocarbons vertical profiles and fluxes in a french rural area. Atmos. Environ. 23, 921–927.Google Scholar
  21. Kanakidou, M., Singh, H. B., Valentin, K. M., and Crutzen, P. J., 1991: A two-dimensional study of ethane and propane oxidation in the troposphere, J. Geophys. Res., 96, 15395–15413.Google Scholar
  22. Kanakidou, M., Crutzen, P. J., Zimmermann, P. H., and Bonsang, B., 1992 A 3-dimensional global study of the photochemistry of ethane and propane in the troposphere: Production and transport of organic nitrogen compounds, in H.van, Dop and G., Kallos (eds), NATO/CCMS 19th ITM on Air Pollution Modelling and its Application XI, Plenum Press, New York, pp. 415–426.Google Scholar
  23. Khalil, M. A. K., and Rasmussen, R. A., 1984: Carbon monoxide in the earth's atmosphere: increasing trend, Science 224, 54–56.Google Scholar
  24. Khalil, M. A. K. and Rasmussen, R. A., 1985: Causes of increasing atmospheric methane: depletion of hydroxyl radicals and the rise of emissions, Atmos. Environ. 19, 397–407.Google Scholar
  25. Khalil, M. A. K. and Rasmussen, R. A., 1988: Trace gases over the Western atlantic ocean: Fluxes from the eastern United States and distributions in and above the planetary boundary layer, Global Biogeochem. Cycles 2, 63–71.Google Scholar
  26. Khalil, M. A. K. and Rasmussen, R. A., 1990: Constraints on the global sources of methane and an analysis of recent budgets, Tellus 42B, 229–236.Google Scholar
  27. Lightman, P., 1990: Seasonal variations of hydrocarbons in the free troposphere at mid latitude, Tellus 42B, 408–422.Google Scholar
  28. Marence, A., Macaigne, M., and Prieur, S., 1989: Meridional and vertical CO and CH4 distributions in the background troposphere (70° N-60° S; 0–12 km altitude) from scientific aircraft measurements during the STRATOZ III experiment (June 1984), Atmos. Environ. 23, 185–200.Google Scholar
  29. Mayer, F. W., Blake, D. R., Tyler, S. C., Markide, Y., Montague, D. C., and Rowland, F. S. 1982: Interhemispheric concentration gradient and atmospheric residence time, Proc. Nat. Acad. Sci. U.S.A. 79, 1366–1370.Google Scholar
  30. Oort, A.: 1983. Global atmospheric circulation statistics 1958–1973, NOAA professional paper, No. 14 US Government Printing Office, Washington DC.Google Scholar
  31. Pandit, G. G. and Rao, M. M., 1990: Evaluation of auto exhaust contribution to atmospheric C2−C5 hydrocarbons at Deonar, Bombay, Atmos. Environ. 24A, 811–813.Google Scholar
  32. Ramond, D., 1977: La pratique de la chromatographie en phase gazeuse, in Hewlett Packard (eds), division analytique, 121 pages.Google Scholar
  33. Ramonet, M., Le, Roulley, J. C., Bousquet, P., and Monfray, P., 1996: Radon-222 measurements during the TROPOZ II campaign and comparison with a global atmospheric transport model, J. Atmos. Chem. 23, 107–136.Google Scholar
  34. Rasmussen, R. A. and Khalil, M. A., 1982: Latitudinal distributions of trace gases in and above the boundary layer, Chemosphere 11, 227–235.Google Scholar
  35. Rudolph, J. and Ehhalt, D. H., 1981: Measurements of C2−C5 hydrocarbons over North Atlantic, J. Geophys. Res. 86, 11,959–11,964.Google Scholar
  36. Rudolph, J., 1988. Two-dimensional distribution of light hydrocarbons: results from the STRATOZ III experiment, J. Geophys. Res. 93, 8367–8377.Google Scholar
  37. Rudolph, J., Khedim, A., and Wagebach, D., 1989: The seasonal variation of light non methane hydrocarbons in the antarctic troposphere, J. Geophys. Res., 94, 13,039–13,044.Google Scholar
  38. Rudolph, J., Khedim, A., Clarkson, T., and Wagenbach, D., 1992: Long term measurements of light alkanes and acetylene in the Antarctic troposphere, Tellus 44B, 252–261.Google Scholar
  39. Rudolph, J., 1995: The tropospheric distribution and budget of ethane, J. Geophys. Res. 100, 11,369–11,381.Google Scholar
  40. Singh, H. B. and Salas, L. J., 1982: Measurements of selected light hydrocarbons over the Pacific Ocean: Latitudinal and seasonal variations, Geophys. Res. Lett. 9, 842–845.Google Scholar
  41. Singh, H. B., Salas, L. J., and Stiles, R. E., 1983: Selected man-made halogenated chemicals in the air and oceanic environment, J. Geophys. Res. 88, 3675–3683.Google Scholar
  42. Singh, H. B., Viezee, W., and Salas, L. J., 1988: Measurements of selected C2−C5 hydrocarbons in the troposphere: latitudinal, vertical and temporal variations, J. Geophys. Res. 93, 15861–15878.Google Scholar
  43. Singh, H. B. and Zimmerman, P. B., 1992: Atmospheric distribution and sources of nonmethane hydrocarbons, in J. O. Nriagu (ed), Gaseous Pollutions: Characterization and Cycling.Google Scholar
  44. Uno, I., Wakamatsu, S., Wadden, R. A., Konno, S., and Koshio, H., 1985: Evaluation of hydrocarbons reactivity in urban air, Atmos. Environ. 19, 1283–1293.Google Scholar
  45. Vaghjiani, G. L. and Ravishankara, A. R., 1991: New measurements of the rate coefficient for the reaction of OH with methane, Nature 350, 406–409.Google Scholar
  46. Van, Valin, C. C. and Luria, M., 1988: Ozone, carbon monoxide, hydrocarbons and DMS over the western ocean, Atmos. Environ. 22, 2401–2409.Google Scholar
  47. Tille, K. J., Savelsberg, M., and Bächman, K., 1985: Airborne measurements of nonmethane hydrocarbons over western Europe, Atmos. Environ. 19, 1751–1760.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • C. Boissard
    • 1
  • B. Bonsang
    • 1
  • M. Kanakidou
    • 1
  • G. Lambert
    • 1
  1. 1.Centre des Faibles Radioactivités, Laboratoire mixte CNRS/CEA, Orme des merisiers/LMCECentre d'Etudes Nucléaires de SaclayGif-sur-Yvette CedexFrance

Personalised recommendations