Skip to main content
Log in

The unzipping model of fatigue crack growth and its application to a two-phase steel

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The unzipping analysis, based on the alternate shear deformation process of two intersecting shear planes at a crack tip, is extended to study fatigue crack growth in a two-phase martensitic-ferritic steel. The unzipping crack increment Δa uz is directly related to ΔK and ΔJ in the case of small scale yielding. It is preferrable to use Δa uz is directly related to ΔK and ΔJ in the case of small scale yielding. It is preferable to use Δa uz as a physical parameter to correlate with the growth rates of micro-cracks and fatigue cracks in a multi-phase material. In the case of micro-cracks, ΔK is often not applicable because of extensive plastic deformation; and in the case of multi-phase material, neither ΔK nor ΔJ is applicable because of material inhomogeneity. The effective ΔK, ΔK eff, is defined in terms of Δa uz. The relations between the endurance limit of a two-phase steel and crack nucleus size, ferrite layer thickness, the constraint by the strong martensite on crack tip deformation in the ferrite domain, and ΔK th's of the martensite and ferrite are analyzed.

Résumé

Une analyse de rupture progressive et continue des liaisons, basée sur un processus de déformation de cisaillement alterné de deux plants de cisaillement s'intersectant à l'extrémité d'une fissure, a été étendue à l'analyse de la propagation des fissures de fatigue dans un acier martensito-ferritique à deux phases. L'accroissement de la fissure Δa est directement en relation avec ΔK et ΔJ dans le cas de déformation plastique de faible étendue. II est préférable d'utiliser Δa comme paramètre physique en corrélation avec les vitesses de croissance de microfissures et des fissures de fatigue dans un matériau à phases multiples. Dans le cas de microfissures, ΔK n'est souvent pas applicable en raison de la déformation plastique importante. Dans le cas de matériau multiphase ni ΔK ni ΔJ ne sont applicables en raison de l'inhomogénéité du matériau. La valeur effective ΔK eff est définie en terme de Δa. Les relations entre la limite d'endurance d'un acier à deux phases et la taille du nodule de fissuration, l'épaisseur de la couche de ferrite, la contrainte qu'exerce une zone martensitique dure sur le domaine ferritique, sur la déformation à l'extrémité de la fissure en domaine ferritique, et les valeurs de ΔK de la martensite et de la ferrite sont analysées.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Orowan, “Fracture and Strength of Solids,” Rep. Prog. Phys. 12 (1949) 185–232.

    Google Scholar 

  2. C. Laird, in Fatigue Crack Propagation, ASTM STP 415 (1967) 131–180.

  3. V.P. Neumann, Zhurnal Metallkde 58 (1967) 78–789.

    Google Scholar 

  4. B. Tomkins, Philosophical Magazine 18, No. 155 (1968) 1041–1066.

    Google Scholar 

  5. R.M.N. Pelloux, Transactions of the American Society of Metals 62 (1969) 281–285.

    Google Scholar 

  6. P. Neumann, Acta Metallurgica 22 (1974) 1155–1178.

    Google Scholar 

  7. A.S. Kuo and H.W. Liu, Scripta Metallurgica 10 (1976) 723–728.

    Google Scholar 

  8. C.Y. Yang, “Modelling of Crack Tip Deformation with Finite Element Method and its Application”, Ph.D. Dissertation, Syracuse, University, Syracuse, NY (April 1979).

  9. H.W. Liu, C.Y. Yang and A.S. Kuo, “Cyclic Crack Growth Analysis and Modelling of Crack Tip Deformation,” International Symposium of Fracture Mechanics, George Washington University, Washington, D.C. (September 1978).

  10. H.W. Liu and H. Kobayashi, “Stretch Zone Width and Striation Spacing-The Comparison of Theories and Experiments.” Scripta Metallurgica (1980) to be published.

  11. N.E. Dowling and J.A. Begley, in Mechanics of Crack Growth,” ASTM STP 590 (1976) 82–103.

  12. C.Y. Yang and H.W. Liu, “The Application of the Unzipping Model of Fatigue Crack Growth to Micro-Cracks”, submitted for publication.

  13. S. Pearson, Engineering Fracture Mechanics 7 (1975) 235–248.

    Google Scholar 

  14. N.E. Dowling, ASTM STP 637 (1977) 97–121.

    Google Scholar 

  15. W.L. Morris, Metallurgical Transactions, submitted for publication.

  16. J. Lankford, T.S. Cook and G.P. Sheldon, “Fatigue Microcrack Growth in a Nickel-Base Superalloy,” International Journal of Fracture 17 (1981) 101–113.

    Google Scholar 

  17. C.Y. Kung and M.E. Fine, Metallurgical Transactions 10A No. 5 (1979) 603–610.

    Google Scholar 

  18. T. Kunio and K. Yamada, “Microstructural Aspects of the Threshold Condition of Non-Propagating Fatigue Cracks in Martensitic-Ferritic Structure,” Symposium on the Fatigue Mechanics, Kansas City, Missouri (1978).

  19. T. Kunio and co-worker, Engineering Fracture Mechanics 7 (1975) 411–417.

    Google Scholar 

  20. K.J. Miller, “Discussion on the Microstructural Aspects of the Threshold Condition of Non-Propagating Fatigue Cracks in Martensite-Ferritic Structures by Kunio and Yamada,” Symposium on the Fatigue Mechanics, Kansas City, Missouri (1978).

  21. H. Suzuki and A.J. McEvily, Metallurgical Transactions A 10 No. 4 (1979) 475–482.

    Google Scholar 

  22. K. Minakawa and A.J. McEvily, “On the Influence of Microstructure on the Threshold Level of Fatigue Crack Growth in Steels,” to be published.

  23. C.Y. Yang and H.W. Liu, “A Sub-Surface Strength Model of Non-Propagating Fatigue Crack in Martensitic-Ferritic Steel,” Proceedings of 3rd International Conference on Mechanical Behavior of Materials, Sheffield, England (Angust 20–24, 1979).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C.Y., Liu, H.W. The unzipping model of fatigue crack growth and its application to a two-phase steel. Int J Fract 17, 157–168 (1981). https://doi.org/10.1007/BF00053518

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00053518

Keywords

Navigation