Skip to main content
Log in

Estimation of the Monin-Obukhov similarity functions from a spectral model

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range −2 z/L + 2. The calculations show good agreement with observations with the exception of a range −1 z/L 0 in which the function Φ m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a,b,c:

contants (see Equations (–4))

Ci :

constants i=u, v, w, θ (see Equation (5)

kme,kmT :

peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively

kmi :

peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i=θ

ksb, kc :

characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively

L:

Monin-Obukhov length

% MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\]:

difference of mean temperature and mean potential temperature

T*:

Monin-Obukhov temperature scale

Ū:

velocity of mean flow in positive x-direction

u*:

friction velocity

u, v, w:

components of velocity fluctuations

z:

height above ground

κ:

von Kármanán constant

θ:

temperature fluctuation

φm :

nondimensional mean shear

φH :

nondimensional mean temperature gradient

φɛ :

nondimensional rate of lolecular dissipation φ of turbulent kinetic energy

φD :

nondimensional divergence of vertical transports of turbulent linetic energy

References

  • Bradley, E. F., Antonia, R. A., and Chambers, A. J.: 1981, ‘Turbulent Reynolds Number and the Turbulent Kinetic Energy Balance in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 21, 183–197.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux-Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Claussen, M.: 1985, ‘A Model of Turbulence Spectra in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 33, 151–172.

    Google Scholar 

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Dyer, A. J. and Bradley, E. F.: 1982, ‘An Alternative Analysis of Flux-Gradient Relationships at the 1976 ITCE’, Boundary-Layer Meterol. 22, 3–19.

    Google Scholar 

  • Eidefeldt, C. B., Johannson, A. V., and Alfredson, P. H.: 1982, ‘A Note on Scaling Laws for Power Spectra of Streamwise Velocity in Turbulent Channel Flow\r

  • Fiedler, F.: 1975, ‘Turbulenter Spannungs- und Deformationstensor in der Prandtl-Schicht’, Beitr. Phys. Atmosph. 48, 290–300.

    Google Scholar 

  • Hennemuth, B.: 1981, ‘Three-Dimensional Structure of Energy Containing Eddies in the Surface Layer’, Beitr. Phys. Atmosph. 54, 422–441.

    Google Scholar 

  • Hinze, J. O.: 1975, Turbulence, MacGraw Hill Book Company, New York.

    Google Scholar 

  • Kaimal, J. C.: 1973, ‘Turbulence Spectra, Length Scales and Structure Parameter in the Stable Surface Layer’, Boundary-Layer Meteorol. 4, 289–309.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Izumi, Y., and Coté, O. R.: 1972, ‘Spectral Characteristics of Surface Layer Turbulence’, Quart. J. Roy. Meteorol. Soc. 98, 563–589.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., Izumi, Y., Caughey, S. J., and Readings, C. J.: 1976, ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2163.

    Google Scholar 

  • McBean, G. A. and Elliott, J. A.: 1975, ‘The Vertical Transports of Kinetic Energy by Turbulence and Pressure in the Boundary Layer’, J. Atmos. Sci. 32, 753–766.

    Google Scholar 

  • Monin, A. S. and Obukhov, A. M.: 1954, ‘Fundamentals Gesetzmäβigkeiten der turbulenten Vermischung in der bodennahen Schicht der Atmosphäre’, in H. Goering (ed.), Sammelband zur statistischen Theorie der Turbulenz, Berlin 1958, 199–226.

  • Onsager, L.: 1945, ‘The Distribution of Energy in Turbulence’, Phys. Rev. 68, 286 (abstract only).

    Google Scholar 

  • Pielke, R. A.: 1981, ‘Mesoscale Numerical Modeling’, Adv. Geophys. 23, 185–3434.

    Google Scholar 

  • Wamser, C. and Müller, H.: 1977, ‘On the Spectral Scale of Wind Fluctuations within and above the Surface Layerr, Quart. J. Roy. Meteorol. Soc. 103, 721–730.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Revaluation of Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Wyngaard, J. C. and Coté, O. R.: 1971, ‘The Budgets of Turbulent Kinetic Energy and Temperature Variance in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 190–201.

    Google Scholar 

  • Yamamoto, G.: 1975, ‘Generalization of the KEYPS Formula in Diabatic Conditions and Related Discussion on the Critical Richardson Number’, J. Meteorol. Soc. Japan 53, 189–195.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claussen, M. Estimation of the Monin-Obukhov similarity functions from a spectral model. Boundary-Layer Meteorol 33, 233–243 (1985). https://doi.org/10.1007/BF00052057

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00052057

Keywords

Navigation