Skip to main content
Log in

Eukaryotic microbiota in the surface waters and sea ice of the Southern Ocean: aspects of physiology, ecology and biodiversity in a ‘two-phase’ ecosystem

  • Papers
  • Published:
Biodiversity & Conservation Aims and scope Submit manuscript

The Southern Ocean provides a habitat for microplankton which is strongly influenced by physical factors. Of these, one of the most important and striking is the formation of sea ice. Organisms in the ice form a unique community with specific properties and adaptations. Material and organisms are exchanged between the water column and the ice during the annual cycle, and ice is an important factor in modifying biogeochemical processes and exchange between ocean and atmosphere. The coupled system, in which a range of organisms alternate between a fluid and a solid medium, provides an interesting exercise in community ecology, and has implications for the assessment of biodiversity in understanding large-scale change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackley, S.F. and Sullivan, C.W. (1994) Physical controls on the development and characteristics of Antarctic sea ice biological communites — a review and synthesis. Deep-Sea Res. 41, 1583–604.

    Google Scholar 

  • Ackley, S.F., Dieckmann, G.S. and Shen, H.T. (1987) Algal and foram incorporation into new sea ice. EOS: Trans. Am. Geophys. Union 68, 1736.

    Google Scholar 

  • Aletsee, L. and Jahnke, J. (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol. 11, 643–7.

    Google Scholar 

  • Archer, S.D., Leakey, R.J.G., Burkill, P.H., Sleigh, M.A. and Appleby, C.J. (1996) The microbial ecology of sea ice at an inshore Antarctic site: taxonomy, biomass, production and temporal change. Mac. Ecol. Progr. Ser. 135, 179–95.

    Google Scholar 

  • Arrigo, K.R. (1994) Impact of ozone depletion on phytoplankton growth in the Southern Ocean: large-scale spatial and temporal variability. Mar. Ecol. Progr. Ser. 114, 1–12.

    Google Scholar 

  • Arrigo, K.R., Sullivan, C.W. and Kremer, J.N. (1991) A bio-optical model of Antarctic sea ice. J. Geophys. Res. 96, 10581–92.

    Google Scholar 

  • Arrigo, K.R., Kremer, J.N. and Sullivan, C.W. (1993a) A simulated Antarctic fast ice ecosystem. J. Geophys. Res. 98, 6929–46.

    Google Scholar 

  • Arrigo, K.R., Robinson, D.H. and Sullivan, C.W. (1993b) A high resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: photosynthetic and bio-optical characteristics of a dense microalgal bloom. Mar. Ecol. Progr. Ser. 98, 173–85.

    Google Scholar 

  • Arrigo, K.R., Dieckmann, G., Gosselin, M., Robinson, D.H., Fritsen, C.H. and Sullivan, C.W. (1995) High resolution study of the platelet ice ecosystem in McMurdo Sound, Antarctica: biomass, nutrient, and production profiles within a dense microalgal bloom. Mar. Ecol. Progr. Ser. 127, 255–68.

    Google Scholar 

  • Atkinson, A. (1996) Subantarctic copepods in an oceanic, low chlorophyll environment: ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Progr. Ser. 130, 85–96.

    Google Scholar 

  • Bianchi, F., Boldrin, A., Cioce, F., Dieckmann, G., Kuosa, H., Larsson, A-M., Nöthig, E-M., Sehlstedt, P-I., Socal, G. and Syvertsen, E.E. (1992) Phytoplankton distribution in relation to sea ice, hydrography and nutrients in the northwestern Weddell Sea in early spring 1988 during EPOS. Polar Biol. 12, 225–35.

    Google Scholar 

  • Billen, G., Lancelot, C. and Mathot, S. (1987) Ecophysiology of phyto- and bacterioplankton growth in the Prydz Bay area during the austral summer 1987. II. Bacterioplankton activity. In Proceedings of the Belgian National Colloquium on Antarctic Research pp. 133–46. Brussels: Science Policy Office.

    Google Scholar 

  • Bowden, K.E. (1970) Turbulence II. Oceanogr. Mar. Biol. Ann. Rev. 8, 11–32.

    Google Scholar 

  • Boyd, I.L. and Roberts, J.P. (1993) Tooth growth in male Antarctic fur seals (Arctocephalus gazella) from South Georgia: an indicator of long-term growth history. J. Zool. 229, 177–90.

    Google Scholar 

  • Bröckel, K.von (1981) The importance of nanoplankton within the pelagic Antarctic ecosystem. Kieler Meerestorsch. Sonderh. 5, 61–7.

    Google Scholar 

  • Bröckel, K.von (1985) Primary production data from the south-western Weddell Sea. Polar Biol. 4. 75–80.

    Google Scholar 

  • Buck, K.R., Bolt, P.A. and Garrison, D.L. (1990) Phagotrophy and faecal pellet production by an athecate dinoflagellate in Antarctic sea ice. Mar. Ecol. Progr. Ser. 60, 75–84.

    Google Scholar 

  • Buckley, R.G. and Trodahl, A.J. (1987) Scattering and absorption of visible light by sea ice. Nature 326, 86–9.

    Google Scholar 

  • Bunt, J.S. (1963) Diatoms of Antarctic sea-ice as agents of primary production. Nature 199, 1225–7.

    Google Scholar 

  • Burkholder, P.R. and Sieburth, J. McN. (1961) Phytoplankton and chlorophyll in the Gerlache and Bransfield Straits of Antarctica. Limnol. Oceanogr. 6, 45–52.

    Google Scholar 

  • Bury, S.J., Owens, N.J.P. and Preston, T. (1995) 13C and 15N uptake by phytoplankton in the marginal ice zone of the Bellingshausen Sea. Deep-Sea Res. II 42, 1225–52.

    Google Scholar 

  • Caddy, J.F. (1986) Modelling stock-recruitment processes in Crustacea: some practical and theoretical perspectives. Can. J. Fish. Aquat. Sci. 43, 2330–44.

    Google Scholar 

  • Caron, D.A. (1991) Evolving role of protozoa in aquatic nutrient cycling. In Protozoa and their Role in Marine Processes (P.C. Reid, C.M. Turley and P.H. Burkill, eds) pp. 387–415. Berlin: Springer-Verlag.

    Google Scholar 

  • Clarke, A. (1983) Life in cold water — the physiological ecology of polar marine ectotherms. Oceanogr. Mar. Biol. Ann. Rev. 21, 342–453.

    Google Scholar 

  • Clarke, D.B. and Ackley, S.F. (1984) Sea ice structure and biological activity in the Antarctic marginal ice zone. J. Geophys. Res. 89, 2087–95.

    Google Scholar 

  • Cole, J.J., Pace, M.L. and Findley, S. (1988) Bacterial production in fresh and saltwater ecosystems: a cross-system review. Mar. Ecol. Progr. Ser. 43, 1–10.

    Google Scholar 

  • Cota, G.F., Anning, J.L., Harris, L.R., Harrison, W.G. and Smith, R.E.H. (1990) Impact of ice algae on inorganic nutrients in sea water and sea ice in Barrow Strait, NWT, Canada during spring. Can. J. Fish. Aquat. Sci. 47, 1402–15.

    Google Scholar 

  • Cox, G.F.N. and Weeks, W.K. (1983) Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 29, 306–16.

    Google Scholar 

  • Crawford, R.M. (1995) The role of sex in the sedimentation of a marine diatom bloom. Limnol. Oceanogr. 40, 200–4.

    Google Scholar 

  • Cripps, G.C. (1995) Biogenic hydrocarbons in the particulate material of the water column of the Bellingshausen Sea, Antarctica, in the region of the marginal ice zone. Deep-Sea Res. II 42, 1123–35.

    Google Scholar 

  • Croxall, J.P., McCann, T.S., Prince, P.A. and Rothery, P. (1988) Reproductive performance of seabirds and seals at South Georgia and Signy Island, South Orkney Islands, 1976–87: implications for Southern Ocean monitoring studies. In Antarctic Ocean and Resources Variability, (D. Sahrhage, ed.) pp. 261–85. Berlin: Springer-Verlag.

    Google Scholar 

  • Davidson, A.T. and Marchant, H.J. (1992) Protist abundance and carbon concentration during a Phaeocystis-dominated bloom at an Antarctic coastal site. Polar Biol. 12, 387–95.

    Google Scholar 

  • Davidson, A.T. and Marchant, H.J. (1994) The impact of ultraviolet radiation on Phaeocystis and selected species of Antarctic marine diatoms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) pp. 187–205. Washington, DC: American Geophysical Union.

    Google Scholar 

  • de Baar, H.J.W., de Jong, J.T.M., Bakker, D.C.E., Löscher, B.M., Veth, C., Bathmann, U. and Smetacek, V. (1995) Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–5.

    Google Scholar 

  • Dieckmann, G.S., Spindler, M., Lange, M.A., Ackley, S.F. and Eicken, H. (1990) Sea ice: a habitat for the foraminiferan Neogloboquadrina pachyderma? In Sea Ice Properties and Processes (CRREL Monograph 90–1) (S.F. Ackley and W.F. Weeks, eds) pp. 86–92. Hanover, New Hampshire: Cold Regions Research and Engineering Laboratory.

    Google Scholar 

  • Dieckmann, G.S., Lange, M.A., Ackley, S.F. and Jennings, J. (1991) The nutrient status in sea ice of the Weddell Sea during winter: effects of sea ice texture and algae. Polar Biol. 11, 449–56.

    Google Scholar 

  • Dugdale, R.C. and Goering, J.J. (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12, 196–206.

    Google Scholar 

  • Eicken, H. (1992) The role of sea ice in structuring Antarctic ecosystems. Polar Biol. 12, 3–13.

    Google Scholar 

  • Eicken, H. and Lange, M.A. (1989) Development and properties of sea ice in the coastal regime of the southeastern Weddell Sea. J. Geophys. Res. 94, 8193–206.

    Google Scholar 

  • El-Sayed, S.Z. and Fryxell, G.A. (1993) Phytoplankton. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 65–122. New York: John Wiley.

    Google Scholar 

  • El-Sayed, S.Z. and Taguchi, S. (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea. Deep-Sea Res. 28, 1017–32.

    Google Scholar 

  • El-Sayed, S.Z. and Weber, L.H. (1985) Size-fractionation of Antarctic phytoplankton. Antarct. J. US. 20 (5), 141–3.

    Google Scholar 

  • El-Sayed, S.Z., Stephens, F.C., Bidigare, R.R. and Ondrusek, M.E. (1990) Effect of ultraviolet radiation on Antarctic marine phytoplankton. In Antarctic Ecosystems. Ecological Change and Conservation (K.R. Kerry and G. Hempel, eds) pp. 379–85. Berlin: Springer-Verlag.

    Google Scholar 

  • Eppley, R.W. (1972) Temperature and phytoplankton growth in the sea. Fishery Bull. Nat. Oceanic Atmos. Admin. 70, 1063–85.

    Google Scholar 

  • Garrison, D.L. (1991) Antarctic sea ice biota. Amer. Zool. 31, 17–33.

    Google Scholar 

  • Garrison, D.L. and Buck, K.R. (1991) Surface layer assemblages in Antarctic pack ice during the austral spring: environmental conditions, primary production and community structure. Mar. Ecol. Prog. Ser. 75, 161–72.

    Google Scholar 

  • Garrison, D.L. and Gowing, M.M. (1993) Protozooplankton. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 129–65. New York John Wiley.

    Google Scholar 

  • Garrison, D.L., Ackley, S.F. and Buck, K.R. (1983) A physical mechanism for establishing algal populations in frazil ice. Nature 306, 363–5.

    Google Scholar 

  • Garrison, D.L., Close, A.L. and Reimintz, E. (1989) Microorganisms concentrated by frazil ice: evidence from laboratory and field measurements. Antarct. Sci. 1, 313–6.

    Google Scholar 

  • Gieskes, W.W.C. and Elbrächter, M. (1986) Abundance of nanoplankton-size chlorophyll-containing particles caused by diatom disruption in surface waters of the Southern Ocean (Antarctic Peninsula region). Neth. J. Sea. Res. 20 291–303.

    Google Scholar 

  • Gleitz, M. and Thomas, D.N. (1992) Physiological responses of a small Antarctic diatom (Chaetoceros sp.) to simulated environmental constraints associated with sea-ice formation. Mar. Ecol. Prog. Ser. 88, 271–8.

    Google Scholar 

  • Gleitz, M. and Thomas, D.N. (1993) Variation in phytoplankton standing stock, chemical composition and physiology during sea-ice formation in the southeastern Weddell Sea. Antarctica. J. Exp. Mar. Biol. Ecol. 173, 211–30.

    Google Scholar 

  • Glibert, P.M., Biggs, D.G. and McCarthy, J.J. (1982) Utilisation of ammonium and nitrate during the austral summer in the Scotia Sea. Deep-Sea Res. 29, 837–50.

    Google Scholar 

  • Gordon, A.L. (1988) Spatial and temporal variability within the Southern Ocean. In Antarctic Ocean and Resources Variability (D. Sahrhage, ed.) pp. 41–56. Berlin: Springer-Verlag.

    Google Scholar 

  • Grimm, N.B. (1995) Why link species and ecosystems? A perspective from ecosystem ecology. In Linking Species and Ecosystems (C.G. Jones and J.H. Lawton, eds) pp. 5–15. New York: Chapman and Hall.

    Google Scholar 

  • Grossi, S.M., Kottmeier, S.T., Moe, R.L., Taylor, G.T. and Sullivan, C.W. (1987) Sea ice microbial communities. VI. Growth and production in bottom ice under graded snow cover. Mar. Ecol. Progr. Ser. 35, 153–64.

    Google Scholar 

  • Grossmann, S. and Gleitz, M. (1993) Microbial responses to experimental sea-ice formation: implications for the establishment of Antarctic sea-ice communities. J. Exp. Mar. Biol. Ecol. 173, 273–89.

    Google Scholar 

  • Hagen, J.B. (1992) An Entangled Bank the Origins of Ecosystem Ecology. New Brunswick: Rutgers University Press.

    Google Scholar 

  • Hansen, P.J. (1992) Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates, with special emphasis on Gyrodinium spirale. Mar. Biol. 114, 327–34.

    Google Scholar 

  • Hardy, A.C. and Gunther, E.R. (1935) The plankton of the South Georgia whaling grounds and adjacent vaters, 1926–1927. Discovery Rep. 11, 1–456.

    Google Scholar 

  • Harper, J.L. and Hawksworth, D.L. (1995) Preface. In Biodiversity — Measurement and Estimation (D.L. Hawksworth, ed.) pp. 5–12. London: Chapman and Hall.

    Google Scholar 

  • Harris, G.P. (1986) Phytoplankton Ecology. Structure, Function and Fluctuation. London: Chapman and Hall.

    Google Scholar 

  • Hart, T.J. (1934) On the phytoplankton of the South-west Atlantic and the Bellingshausen Sea, 1929–31. Discovery Rep. 8, 1–268.

    Google Scholar 

  • Hart, T.J. (1942) Phytoplankton periodicity in Antarctic surface waters. Discovery Rep. 21, 261–356.

    Google Scholar 

  • Haury, L.R., McGowan, J.A. and Wiebe, P.H. (1978) Patterns and processes in the space-time scales of plankton distributions. In Spatial Pattern in Plankton Communities (J.H. Steele, ed.) pp. 277–328. New York: Plenum Publishing.

    Google Scholar 

  • Hendey, N.I. (1937) The plankton diatoms of the Southern Seas. Discovery Rep. 16, 151–364.

    Google Scholar 

  • Heywood, R.B. and Priddle, J. (1987) Retention of phytoplankton by an eddy. Cont. Shelf Res. 7, 937–55.

    Google Scholar 

  • Holm-Hansen, O. and Mitchell, B.G. (1991) Spatial and temporal distribution of phytoplankton and primary production in the western Bransfield Strait region. Deep-Sea Res. 38, 961–80.

    Google Scholar 

  • Holm-Hansen, O., El-Sayed, S.Z., Franceschini, G.A. and Cuhel, R.L. (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In Adaptations within Antarctic Ecosystems (G.A. Llano, ed.) pp. 11–50. Houston: Gulf Publishing.

    Google Scholar 

  • Horner, R. (1984) Do ice algae produce the spring phytoplankton bloom in seasonally ice-covered waters? A review of recent literature. In Proceedings of the Seventh International Diatom Symposium, Philadelphia, August 22–27, 1982 (D.G. Mann, ed.) pp. 401–9. Koenigstein: Otto Koeltz.

    Google Scholar 

  • Hornet, R., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Hoshiai, T., Legendre, L., Melnikov, I.A., Reeburgh, W.S., Spindler, M. and Sullivan, C.S. (1992) Ecology of sea ice biota 1. Habitat, terminology, and methodology. Polar Biol. 12, 417–27.

    Google Scholar 

  • Houghton, J.T., Meira Filho, L.G., Bruce, J., Hoesung, L., Callander, B., Haites, E., Harris, N. and Maskell, K. (eds) (1995) Climate Change 1994 Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hutchinson, G.E. (1961) The paradox of the plankton. Amer. Nat., 95, 137–45.

    Google Scholar 

  • Jacques, G. (1983) Some ecophysiological aspects of the Antarctic phytoplankton. Polar Biol. 2, 27–33.

    Google Scholar 

  • Jacques, G. (1991) Is the concept of new production-regenerated production valid for the Southern Ocean? Mar Chem. 35, 273–86.

    Google Scholar 

  • Johannessen, O.M., Miles, M. and Bjørgo, E. (1995) The Arctic's shrinking sea ice. Nature 376, 126–7.

    Google Scholar 

  • Jones, A.K. and Cannon, R.C. (1986) The release of micro-algal photosynthate and associated bacterial uptake and heterotrophic grown. Br. Physiol. J. 21, 341–58.

    Google Scholar 

  • Karentz, D. (1994) Ultraviolet tolerance mechanisms in Antarctic marine organisms. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) pp. 93–110 Washington, DC: American Geophysical Union.

    Google Scholar 

  • Karl, D.M. (1993) Microbial processes in the Southern Oceans. In Antarctic Microbiology (E.I. Friedmann ed.) pp. 1–63. New York: John Wiley.

    Google Scholar 

  • Karsten, U., Wiencke, C. and Kirst, G.O. (1990) The beta-dimethylsulphoniopropionate (DMSP) content of macroalgae from Antarctica and Southern Chile. Bot. Mar. 33, 143–6.

    Google Scholar 

  • Key, J. and McLaren, A.S. (1991) Fractal nature of the sea ice draft profile. Geophys. Res. Lett. 18, 1437–40.

    Google Scholar 

  • King, J.C. (1994) Recent climatic variability in the vicinity of the Antarctic Peninsula. Int. J. Climatol. 14, 367–69.

    Google Scholar 

  • Kirst, G.O., Thiel, C., Wolff, H., Nothnagel, J., Wanzek, M. and Ulmke, R. (1991) Dimethylsulphoniopropionate (DMSP) in ice-algae and its possible biological role. Mar. Chem. 35, 381–8.

    Google Scholar 

  • Kopczynska, E.E. (1992) Dominance of microflagellates over diatoms in the Antarctic areas of deep vertical mixing and krill concentrations. J. Plankt. Res. 14, 1031–54.

    Google Scholar 

  • Kosaki, S., Takahashi, M., Yamaguchi, Y. and Aruga, Y. (1985) Size characterisation of chlorophyll particles in the Southern Ocean. Trans. Tokyo Univ. Fish. 6, 85–97.

    Google Scholar 

  • Krebs, W.N. (1983) Ecology of neritic marine diatoms, Arthur Harbour, Antarctica. Micropalaeontol 29, 267–97.

    Google Scholar 

  • Kumar, N., Anderson, R.F., Mortlock, R.A., Froelich, P.N., Kublik, P., Dittrich-Hannen, B. and Suter, M. (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675–80.

    Google Scholar 

  • Kuosa, H., Norrman, B., Kivi, K. and Brandini, F. (1992) Effects of Antarctic sea ice biota on seeding as studied in aquarium experiments. Polar Biol. 12, 333–9.

    Google Scholar 

  • Laubscher, R.K., Perissinotto, R. and McQuaid, C.D. (1993) Phytoplankton production and biomass at frontal zones in the Atlantic sector of the Southern Ocean. Polar Biol. 13, 471–81.

    Google Scholar 

  • Leakey, R.J.G., Fenton, N. and Clarke, A. (1994) The annual cycle of planktonic ciliates in nearshore waters at Signy Island, Antarctica. J. Plankt. Res. 16, 841–56.

    Google Scholar 

  • Legendre, L., Ackley, S.F., Dieckmann, G.S., Gulliksen, B., Horner, R., Hoshiai, T., Melnikov, I.A., Reeburgh, W.S., Spindler, M. and Sullivan, C.W. (1992) Ecology of sea ice biota. 2. Global significance. Polar Biol. 12, 429–44.

    Google Scholar 

  • Lewis, M.R., Cullen, J.J. and Platt, T. (1984) Relationships between vertical mixing and photoadaptation of phytoplankton: similarity criteria. Mar. Ecol. Progr. Ser. 15, 14–19.

    Google Scholar 

  • Ligowski, R. (1986) Net phytoplankton of the Admiralty Bay (King George Island, South Shetland Islands) in 1983. Polish Polar Res. 7, 127–54.

    Google Scholar 

  • Lizotte, M.P. and Sullivan, C.W. (1992) Photosynthetic capacity in microalgae associated with Antarctic pack ce. Polar Biol. 12, 497–502.

    Google Scholar 

  • Longhurst, A.R. (1991) Role of the marine biosphere in the global carbon cycle. Limnol. Oceanogr. 36, 1507–26.

    Google Scholar 

  • Longhurst, A., Sathyendranath, S., Platt, T. and Caverhill, C. (1995) Estimate of global primary production in the ocean from satellite radiometer data. J. Plankt. Res. 17, 1245–71.

    Google Scholar 

  • McCarthy, J. (1980) Nitrogen. In The Physiological Ecology of Phytoplankton (I. Morris, ed.) pp. 191–233. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • McCarthy, J.J. (1981) The kinetics of nutrient utilization. Can. Bull. Fish. Aquat. Sci. 210, 211–33.

    Google Scholar 

  • McConville, J.M., Mitchell, C. and Wetherbee, R. (1985) Patterns of carbon assimilation in a microalgal community from annual sea ice, east Antarctica. Polar Biol. 4, 135–41.

    Google Scholar 

  • McGowan, J.A. and Walker, P.W. (1993) Pelagic diversity patterns. In Species Diversity in Ecological Communities — Historical and Geographical Perspectives (R.E. Ricklefs and D. Schluter, eds) pp. 203–14. Chicago: University of Chicago Press.

    Google Scholar 

  • Manabe, S., Stouffer, R.J., Spelman, M.J. and Bryan, K. (1991) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 1: annual mean response. J. Climate 4, 785–818.

    Google Scholar 

  • Manabe, S., Spelman, M.J. and Stouffer, R.J. (1992) Transient responses of a coupled ocean-atmosphere model to gradual changes of atmospheric CO2. Part 2: seasonal response. J. Climate 5, 105–26.

    Google Scholar 

  • Mann, K.H. and Lazier, J.R.N. (1991) Dynamics of Marine Ecosystems. Biological-physical Interactions in the Oceans. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Marchant, H. and Murphy, E.J. (1994) Interactions at the base of the Antarctic food web. In Southern Ocean Ecology: the BIOMASS Perspective (S.Z. El-Sayed, ed.) pp. 267–85. Cambridge: Cambridge University Press.

    Google Scholar 

  • Martin, J.H., Gordon, R.M. and Fitzwater, S.E. (1990) Iron in Antarctic waters. Nature 345, 156–8.

    Google Scholar 

  • Martin, J.H., Gordon, R.M. and Fitzwater, S.E. (1991) The case for iron. Limnol. Oceanogr. 36, 1793–802.

    Google Scholar 

  • Mitchell, B.G. and Holm-Hansen, O. (1991) Observations and modelling of the Antarctic phytoplankton crop in relation to mixing depth. Deep-Sea Res. 38, 981–1007.

    Google Scholar 

  • Mizroch, S.A., Rice, D.W., Bengtson, J.L. and Larson, S.W. (1985) Preliminary Atlas of Balaenopterid Whale Distribution in the Southern Ocean Based on Pelagic Catch Data. Report SC-CAMLR-IV/BG/21 to the CCAMLR Scientific Committee.

  • Moloney, C.L. and Field, J.G. (1991) The size-based dynamics of plankton foodwebs. 1. A simulation model of carbon and nitrogen flows. J. Plankt. Res. 13, 1003–38.

    Google Scholar 

  • Moloney, C.L., Field, J.G. and Lucas, M.I. (1991) The size-based dynamics of plankton foodwebs. 2. Simulations of three contrasting southern Benguela foodwebs. J. Plankt. Res. 13, 1039–92.

    Google Scholar 

  • Morse, D.R., Lawton, J.H., Dodson, M.M. and Williamson, M.H. (1985) Fractal dimension of vegetation and the distribution of arthropod body length. Nature 314, 731–3.

    Google Scholar 

  • Mortan-Bertrand, A. (1988) Photosynthetic metabolism of an Antarctic diatom, and its physiological response to fluctuations in light. Polar Biol. 9, 53–60.

    Google Scholar 

  • Mortan-Bertrand, A. (1989) Effects of light fluctuations on the growth and productivity of Antarctic diatoms in culture. Polar Biol. 9, 245–52.

    Google Scholar 

  • Mortlock, R.A., Charles, C.D., Froelich, P.N., Zibello, M.A., Saltzman, J., Hays, J.D. and Burckle, H. (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 351, 220–3.

    Google Scholar 

  • Murphy, E.J., Morris, D.J., Watkins, J.L. and Priddle, J. (1988) Scales of interaction between Antarctic krill and the environment. In Antarctic Ocean and Resources Variability (D. Sahrhage, ed.) pp. 120–30. Berlin: Springer-Verlag.

    Google Scholar 

  • Murphy, E.J., Field, J., Kagan, B., Lin, C., Ryabchenko, V., Sarmiento, J. and Steele, J. (1993) Global extrapolation. In Towards a Model of Ocean Biogeochemical Processes (G.T. Evans and M.J.R. Fasham, eds) pp. 21–46. Berlin: Springer-Verlag.

    Google Scholar 

  • Murphy, E.J., Clarke, A., Symon, C. and Priddle, J. (1995) Temporal variation in Antarctic sea ice: analysis of a long-term fast-ice record from the South Orkney Islands. Deep-Sea Res. 42, 1045–62.

    Google Scholar 

  • Nelson, D.M. and Smith, W.O. (1991) Sverdrup revisited: critical depths, maximum chlorophyll levels, and the control of Southern Ocean productivity by the irradiance-mixing regime. Limnol. Oceanogr. 36, 1650–61.

    Google Scholar 

  • Neori, A. and Holm-Hansen, O. (1982) Effect of temperature on rate of photosynthesis in Antarctic phytoplankton. Polar Biol. 1, 33–8.

    Google Scholar 

  • Nolting, R.F., de Baar, H.J.W., van Bennekom, A.J. and Masson, A. (1991) Cadmium, copper and iron in the Scotia Sea, Weddell Sea and Weddell/Scotia Confluence (Antarctica). Mar Chem. 35, 219–43.

    Google Scholar 

  • Owens, N.J.P., Cook, D., Colebrook, M., Hunt, H. and Reid, P.C. (1989) Long term trends in the occurrence of Phaeocystis sp in the north-east Atlantic. J. Mar. Biol. Assn. UK, 69, 813–21.

    Google Scholar 

  • Owens, N.J.P., Priddle, J. and Whitehouse, M.J. (1991) Variations in phytoplanktonic nitrogen assimilation around South Georgia and in Bransfield Strait (Southern Ocean). Mar. Chem. 35, 287–304.

    Google Scholar 

  • Palmisano, A.C. and Garrison, D.L. (1993) Microorganisms in Antarctic sea ice. In Antarctic Microbiology (E.I. Friedmann, ed.) pp. 167–218. New York: John Wiley.

    Google Scholar 

  • Palmisano, A.C., SooHoo, J.B., Moe, R.L. and Sullivan, C.W. (1987) Sea ice microbial communities. VII. Changes in under-ice spectral irradiance during the development of Antarctic sea ice microalgal communities. Mar. Ecol Progr. Ser. 35, 165–173.

    Google Scholar 

  • Peinert, R., von Bodungen, B. and Smetacek, V. (1989) Food web structure and loss rates. In Productivity of the Ocean: Present and Past (W.H. Berger, V. Smetacek and G. Wefer, eds) pp. 35–48. London: John Wiley.

    Google Scholar 

  • Peterson, R.G. and Whitworth, T. (1989) The Subantarctic and Polar Fronts in relation to deep water masses through the southwestern Atlantic. J. Geophys. Res. 94, 10817–38.

    Google Scholar 

  • Pond, D., Priddle, J., Sargent, J. and Watkins, J.L. (1993) Lipid composition of Antarctic microplankton in relation to the nutrition of krill. In University Research in Antarctica 1989–92. Proceedings of the British Antarctic Survey Antarctic Special Topic Award Scheme Round 2 Symposium (R.B. Heywood, ed.) pp. 133–9. Cambridge: British Antarctic Survey.

    Google Scholar 

  • Priddle, J. (1980) The production ecology of benthic plants in some Antarctic lakes. 2, Laboratory physiology studies. J. Ecol. 68, 155–66.

    Google Scholar 

  • Priddle, J. and Thomas, D.P. (1989) Coscinodiscus bouvet Karsten — a distinctive diatom which may be an indicator of changes in the Southern Ocean. Polar Biol. 9, 161–7.

    Google Scholar 

  • Priddle, J., Hawes, I., Ellis-Evans, J.C. and Smith, T.J. (1986) Antarctic aquatic ecosystems as habitats for phytoplankton. Biol. Rev. 61, 199–238.

    Google Scholar 

  • Priddle, J., Croxall, J.P., Everson, I., Heywood, R.B., Murphy, E.J., Prince, P.A. and Sear, C.B. (1988) Large-scale fluctuations in distribution and abundance of krill — a discussion of possible causes. In Antarctic Ocean and Resources Variability (D. Sahrhage, ed.) pp. 169–82. Berlin: Springer-Verlag.

    Google Scholar 

  • Priddle, J., Smetacek, V. and Bathmann, U. (1992) Antarctic marine primary production, biogeochemical carbon cycles and climate change. Phil. Trans. Roy. Soc. B 338, 289–97.

    Google Scholar 

  • Priddle, J., Leakey, R., Symon, C., Whitehouse, M., Robins, D., Cripps, G., Murphy, E. and Owens, N. (1995) Nutrient cycling by Antarctic marine microbial plankton. Mar. Ecol. Progr. Ser. 116, 181–98.

    Google Scholar 

  • Raymond, J.A., Sullivan, C.W. and DeVries, A.L. (1994) Release of ice active substances by Antarctic sea ice diatoms. Polar Biol. 14, 71–5.

    Google Scholar 

  • Riebesell, U., Schloss, I. and Smetacek, V. (1991) Aggregation of algae released from melting sea ice: implications for seeding and sedimentation. Polar Biol. 11, 239–48.

    Google Scholar 

  • Riebesell, U., Wolf-Gladrow, D.A. and Smetacek, V. (1993) Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361, 249–51.

    Google Scholar 

  • Robinson, C. and Williams, P.J.LeB. (1993) Temperature and Antarctic plankton community respiration. J. Plankt. Res. 15, 1035–51.

    Google Scholar 

  • Rönner, U., Sorensson, F., Holm-Hansen, O. (1983). Nitrogen assimilation by phytoplankton in the Scotia Sea. Polar Biol. 2, 137–47.

    Google Scholar 

  • Ryan, K.G. and Beaglehole, D. (1994) Ultraviolet radiation and bottom-ice algae: laboratory and field studies from McMurdo Sound, Antarctica. In Ultraviolet Radiation in Antarctica: Measurements and Biological Effects (C.S. Weiler and P.A. Penhale, eds) pp. 229–42. Washington, DC: American Geophysical Union.

    Google Scholar 

  • Sakshaug, E., Slagstad, D. and Holm-Hansen, O. (1991) Factors controlling the development of phytoplankton blooms in the Antarctic Ocean — a mathematical model. Mar. Chem. 35, 259–71.

    Google Scholar 

  • Sambrotto, R.N., Savidge, G., Robinson, C., Boyd, P., Takahashi, T., Karl, D.M., Langdon, C., Chipman, D., Marra, J. and Codispoti, L. (1993) Elevated consumption of carbon relative to nitrogen in the surface ocean. Nature 363, 248–50.

    Google Scholar 

  • Sathyendranath, S., Gouveia, A.D., Shetye, S.R., Ravindran, P. and Platt, T. (1991) Biological control of surface temperature in the Arabian Sea. Nature, 349, 54–6.

    Google Scholar 

  • Savidge, G., Harbour, D., Gilpin, L.C. and Boyd, P.W. (1995) Phytoplankton distributions and production in the Bellingshausen Sea, austral spring 1992. Deep-Sea Res. II 42, 1201–24.

    Google Scholar 

  • Savidge, G., Friddle, J., Gilpin, L.C., Bathmann, U., Murphy, E.J., Owens, N.J.P., Pollard, R.T., Turner, D.R., Veth, C. and Boyd, P.W. (in press) An assessment of the role of the marginal ice zone in the carbon cycle of the Southern Ocean. Antarct. Sci.

  • Scheffer, M. (1991) Should we expect strange attractors behind phytoplankton dynamics — and if so, should we bother? J. Plankt. Res. 13, 1291–305.

    Google Scholar 

  • Schwinghamer, P. (1981) Characteristic size distributions of integral benthic communities. Can. J. Fish. Aquat. Sci. 38, 1255–63.

    Google Scholar 

  • Sheldon, R.W., Prakash, A. and Sutcliffe, W.H. (1972) The size distribution of particles in the ocean. Limnol. Oceanogr. 17, 327–40.

    Google Scholar 

  • Sherr, B.F. and Sherr, E.B. (1988) Role of microbes in pelagic foodwebs: a revised concept. Limnol. Oceanogr. 33, 1225–7.

    Google Scholar 

  • Shimmield, C.B., Ritchie, G.D. and Fileman, T.W. (1995) The impact of marginal ice zone processes on the distribution of 210Pb, 210Po and 234Th and implications for new production in the Bellingshausen Sea, Antarctica. Deep-Sea Res. II 42, 1313–35.

    Google Scholar 

  • Siegenthaler, U. and Sarmiento, J.L. (1993) Atmospheric carbon dioxide and the ocean. Nature 365, 119–25.

    Google Scholar 

  • Smetacek, V. and Passow, U. (1990) Spring bloom initiation and Sverdrup's critical depth model. Limnol. Oceanogr. 35, 228–34.

    Google Scholar 

  • Smetacek, V., Scharek, R. and Nöthig, E-M. (1990) Seasonal and regional variation in the pelagial and its relationship to the life history of krill. In Antarctic Ecosystems. Ecological Change and Conservation (K.R. Kerry and G. Hempel, eds) pp. 103–14. Berlin: Springer-Verlag.

    Google Scholar 

  • Smetacek, V., Scharek, R., Gordon, L.I., Eicken, H., Fahrbach, E., Rohardt, G. and Moore, S. (1992) Early spring phytoplankton bloom in ice platelet layers of the southern Weddell Sea, Antarctica. Deep-Sea Res. 39, 153–68.

    Google Scholar 

  • Smith, R.C., Prézelin, B.B., Baker, K.S., Bidigare, R.R., Boucher, N.P., Coley, T., Karentz, D., MacIntyre, S., Matlick, H.A., Menzies, D., Ondrusek, M., Wan, Z. and Waters, K.J. (1992) Ozone depletion: ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255, 95–9.

    Google Scholar 

  • Stoecker, D.K., Buck, K.R. and Putt, M. (1992) Changes in the sea-ice brine community during spring-summer transition, McMurdo Sound, Antarctica. II. Phagotrophic protists. Mar. Ecol. Progr. Ser. 95, 103–13.

    Google Scholar 

  • Sullivan, C.W. (1985) Sea ice bacteria: reciprocal interactions of the organisms and their environment. In Sea Ice Biota (R.A. Horner, ed.) pp. 159–70. Boca Raton, Fl: CRC Press.

    Google Scholar 

  • Sullivan, C.W., Palmisano, A.C., Kottmeier, S.T., Grossi, S. and Moe, M. (1985) The influence of light on growth and development of the sea-ice microbial community of McMurdo Sound. In Antarctic Food Webs and Nutrient Cycles (R. Siegfried, ed.) pp. 78–83. Berlin: Springer-Verlag.

    Google Scholar 

  • Sullivan, C.W., McClain, C.R., Comiso, J.C. and Smith, W.O. (1988) Phytoplankton standing crops within and Antarctic ice edge assessed by remote satellite sensing. J. Geophys. Res. 93, 12487–98.

    Google Scholar 

  • Syrett, P.J. (1981) Nitrogen metabolism of microalgae. Can. Bull. Fish. Aquat. Sci. 210, 182–210.

    Google Scholar 

  • Testa, J.W., Oehlert, G., Ainley, D.G., Bengtson, J.L., Siniff, D.B., Laws, R.M. and Rounsevell, D. (1991) Temporal variability in Antarctic marine ecosystems: periodic fluctuations in phocid seals. Can. J. Fish. Aquat. Sci. 48, 631–9.

    Google Scholar 

  • Tett, P. and Barton, E.D. (1995) Why are there about 5000 species of phytoplankton in the sea? J. Plankt. Res. 17 1693–704.

    Google Scholar 

  • Thomas, D.N., Baumann, M.E. and Gleitz, M. (1992) Efficiency of carbon assimilation and photoacclimation in a small unicellular Chaetoceros species from the Weddell Sea (Antarctica): influence of temperature and irradiation. J. Exp. Mar. Biol. Ecol. 157, 195–209.

    Google Scholar 

  • Tilzer, M.M., Elbrächter, M., Gieskes, W.W. and Beese, B. (1986) Light-temperature interactions in the control of photosynthesis in Antarctic phytoplankton. Polar Biol. 5, 105–11.

    Google Scholar 

  • Tréguer, P. and Jacques, G. (1992) Dynamics of nutrients and phytoplankton, and fluxes of carbon, nitrogen and silicon in the Antarctic Ocean. Polar Biol. 12, 142–62.

    Google Scholar 

  • Turner, D.R. and Owens, N.J.P. (1995) A biogeochemical study in the Bellingshausen Sea: overview of the STERNA 1992 expedition. Deep-Sea Res II. 42, 907–32.

    Google Scholar 

  • Vincent, W.F. (1988) Microbial Ecosystems of Antarctica. Cambridge: Cambridge University Press.

    Google Scholar 

  • Walton, D.W.H. and Bonner, W.N. (1984) History and exploration in Antarctic biology. In Key Environments: Antarctica (W.N. Bonner and D.W.H. Walton, eds) pp. 1–22. Oxford: Pergamon Press.

    Google Scholar 

  • Warwick, R.M., Collins, N.R., Gee, J.M. and George, C.L. (1986) Species size distributions of benthic and pelagic metazoa: evidence for interaction? Mar. Ecol. Progr. Ser. 34, 63–8.

    Google Scholar 

  • Weeks, W.F. and Ackley, S.F. (1982) The growth, structure and properties of sea ice. CRREL Monogr. 82–1.

  • Weissenberger, J., Dieckmann, G., Gradinger, R. and Spindler, M. (1992) Sea-ice: a cast technique to examine and analyse brine pockets and channel structure. Limnol. Oceanogr. 37, 179–83.

    Google Scholar 

  • Westerland, S. and Öhman, P. (1991) Iron in the water column of the Weddell Sea. Mar Chem. 35, 199–217.

    Google Scholar 

  • Wheeler, P.A. and Kokkinakis, S.A. (1990) Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr. 35, 1267–78.

    Google Scholar 

  • Whitaker, T.M. (1977) Plant Growth in Inshore Waters of Signy Island, Antarctica. PhD thesis, University of London.

  • Whitaker, T.M. (1982) Primary production of phytoplankton off Signy Island, South Orkneys, the Antarctic. Proc. Roy. Soc. Lond. Series B 214, 169–89.

    Google Scholar 

  • Whitehouse, M.J., Symon, C. and Priddle, J. (1993) Variations in the distribution of chlorophyll a and inorganic nutrients around South Georgia, South Atlantic. Antarct. Sci. 5, 367–76.

    Google Scholar 

  • Whitehouse, M.J., Friddle, J. and Woodward, E.M.S. (1995) Spatial variability of inorganic nutrients in the marginal ice zone of the Bellingshausen Sea during the austral spring. Deep-Sea Res. II 42, 1047–58.

    Google Scholar 

  • Whitehouse, M.J., Friddle, J. and Symon, C.J. (1996) Seasonal and annual change in seawater temperature, salinity and nutrient distributions around South Georgia, South Atlantic. Deep-Sea Res. 43, 425–43.

    Google Scholar 

  • Williams, P.J.LeB., Rainé, R.C.T., Bryan, J.R. (1979) Agreement between the 14C and oxygen methods of measuring phytoplankton production: reassessment of the photosynthetic quotient. Oceanol. Acta 2, 411–6.

    Google Scholar 

  • Witek, Z. and Krajewska-Soltys, A. (1989) Some examples of the epipelagic plankton size structure in high latitude oceans. J. Plankt. Res. 11, 1143–55.

    Google Scholar 

  • Yu, J., Li, R. and Lü, P. (1986) Species composition and number variation of phytoplankton in the inshore waters of Davis Station, Antarctica. In A Collection of Antarctic Scientific Explorations, pp. 105–9. Chinese National Committee for Antarctic Research.

  • Zeebe, R.E., Eicken, H., Robinson, D.H., Wolf-Gladrow, D. and Dieckmann, G.S. (1996) Modelling the heating and melting of sea ice through light absorption by microalgae. J. Geophys. Res. 101, 1163–81.

    Google Scholar 

  • Zwally, H.J., Comiso, J.C., Parkinson, C.L., Campbell, W.J., Carsey, F.D. and Gloersen, P. (1983) Antarctic Sea Ice, 1973–1976: Satellite Passive Microwave Observations. Washington, DC: National Aeronautics and Space Administration, Scientific and Technical Information Branch.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priddle, J., Leakey, R.J.G., Archer, S.D. et al. Eukaryotic microbiota in the surface waters and sea ice of the Southern Ocean: aspects of physiology, ecology and biodiversity in a ‘two-phase’ ecosystem. Biodivers Conserv 5, 1473–1504 (1996). https://doi.org/10.1007/BF00051988

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051988

Keywords

Navigation