Large scale chaos and marginal stability in the solar system

  • Jacques Laskar


Large scale chaos is present everywhere in the solar system. It plays a major role in the sculpting of the asteroid belt and in the diffusion of comets from the outer region of the solar system. All the inner planets probably experienced large scale chaotic behavior for their obliquities during their history. The Earth obliquity is presently stable only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic variations from 0° to about 60°. On billion years time scale, the orbits of the planets themselves present strong chaotic variations which can lead to the escape of Mercury or collision with Venus in less than 3.5 Gyr. The organization of the planets in the solar system thus seems to be strongly related to this chaotic evolution, reaching at all time a state of marginal stability, that is practical stability on a time-scale comparable to its age.


Mercury Solar System Outer Region Chaotic Behavior Marginal Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Applegate, J.H., Douglas, M.R., Gursel, Y., Sussman, G.J. and Wisdom, J.: 1986, “The solar system for 200 million years,’ Astron. J. 92, 176–194Google Scholar
  2. Arnold V.: 1963x, Proof of Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the hamiltonien, Rus. Math. Surv. 18, N6 9–36Google Scholar
  3. Arnold, V. I.: 1963b, ‘Small denominators and problems of stability of motion in classical celestial mechanics,’ Russian Math. Surveys, 18, 6, 85–193Google Scholar
  4. Bretagnon, P.: 1974, Termes a longue périodes dans le système solaire, Astron. Astrophys 30 341–362Google Scholar
  5. Brumberg, V.A., Chapront, J.: 1973, Construction of a general planetary theory of the first order, Cel. Mech. 8 335–355Google Scholar
  6. Carpino, M., Milani, A. and Nobili, A.M.: 1987, Long-term numerical integrations and synthetic theories for the motion of the outer planets, Astron. Astrophys 181 182–194Google Scholar
  7. Celletti, A.: 1990x, Analysis of resonances in the spin-orbit problem in celestial mechanics: the synchronous resonance (Part I), J. Appl. Math. Phys. (ZAMP) 41 174–204Google Scholar
  8. Celletti, A.: 1990b, Analysis of resonances in the spin-orbit problem in celestial mechanics: higher order resonances and some numerical experiments (Part II), J. Appl. Math. Phys. (ZAMP) 41 453–479Google Scholar
  9. Chirikov, B.V.: 1979, A universal instability of many dimensional oscillator systems, Physics Reports 52 263–379Google Scholar
  10. Chirikov, B.V., Vecheslavov, V.V.: 1989, Chaotic dynamics of comet Halley, Astron. Astrophys. 221, 146–154Google Scholar
  11. Cohen, C.J., Hubbard, E.C., Oesterwinter, C.: 1973,, Astron. Papers Am. Ephemeris XXII 1Google Scholar
  12. Colombo, G.: 1966, Astron. J., 71, 891–896Google Scholar
  13. Dermott, S.F., Murray, C. D.: Nature of the Kirkwood gaps in the asteroidal belt, Nature, 301, 201–205Google Scholar
  14. Dobrovolskis, A.R.: 1980, Atmospheric Tides and the Rotation of Venus JI.Spin Evolution, Icarus, 41, 18–35Google Scholar
  15. Dones, L., Tremaine, S.: 1993a, Why does the Earth spin forward?, Science 259 350–354Google Scholar
  16. Dones, L., Tremaine, S.: 1993b, On the origin of planetary spins, Icarus 103 67–92Google Scholar
  17. Dumas, H. S., Laskar, J.: 1993, Global Dynamics and Long-Time Stability in Hamiltonian Systems via Numerical Frequency Analysis, Phys. Rev. Lett. 70, 2975–2979Google Scholar
  18. Duncan, M., Quinn, T., Tremaine, S.: 1988, The origin of short period comets Astrophys. J. Lett, 328, L69-L73Google Scholar
  19. Duncan, M., Quinn, T., Tremaine, S.: 1989, The Long-Term evolution of orbits in the solar system: a mapping approach Icarus, 82, 402–418Google Scholar
  20. Duriez, L.: 1979, Approche d'une théorie générale planétaire en variable elliptiques héliocentriques, these LilleGoogle Scholar
  21. Farinella, P., Froeschlé, Ch., Gonczi, R.: 1993, Meteorites from the asteroid 6 Hebe, Cel. Mech. 56 287–305Google Scholar
  22. Farinella, P., Froeschlé, C., Gonczi, R.: 1994, Meteorite delivery and transport, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 205–222, Kluwer, DordrechtGoogle Scholar
  23. Fernández, J.A.: 1980, On the existence of a comet belt beyond Neptune, Mon. Not. Roy. AStron. Soc., 192, 481–492Google Scholar
  24. Fernández, J.A.: 1994, Dynamics of comets: recent developments and new challenges, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 223–240, Kluwer, DordrechtGoogle Scholar
  25. Ferraz-Mello, S.: 1994, Kirkwood gaps and resonant groups, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 175–188, Kluwer, DordrechtGoogle Scholar
  26. Froeschlé, C., Scholl, H.: 1977 A qualitative comparison between the circular and elliptic Sun-Jupiter-asteroid problem at commensurabilities Astron. Astrophys. 57, 33–59Google Scholar
  27. Froeschlé C. Gonzci R., 1988, On the stochasticity of Halley like comets, Cedes. Mech. 43, 325–330Google Scholar
  28. Giorgilli A., Delshams A., Fontich, E., Galgani L., Simo C.: 1989, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, J. Diff. Equa. 77 167–198Google Scholar
  29. Gladman, B., Duncan, M.: 1990, On the fates of minor bodies in the outer solar system Astron. J., 100 (5)Google Scholar
  30. Goldreich, P., Peale S.J.: 1970, The obliquity of Venus, Astron. J., 75, 273–284Google Scholar
  31. Haretu, S.C.: 1885, Sur l'invariabilité des grands axes des orbites planétaires Ann. Obs. Paris, XVIII, I1-I39Google Scholar
  32. Harris A.L., Ward, W.R.: 1982, Dynamical constraints on the formation and evolution of planetary bodies, Ann. Rev. Earth Planet Sci. 10 61–108Google Scholar
  33. Hart, M.H.: 1978, The evolution of the atmosphere of the Earth, Icarus 33 23–39Google Scholar
  34. Hénon, M. and Heiles, C.: 1964, The applicability of the third integral of motion: some numerical experiment, Astron. J., 69, 73–79Google Scholar
  35. Holman, MA., Wisdom, J.: 1993, Dynamical stability in the outer solar system and the delivery of short period comets Astron. J., 105(5)Google Scholar
  36. Imbrie, J.: 1982, Astronomical Theory of the Pleistocene ice ages: a brief historical review, Icarus 50 408–422Google Scholar
  37. Jakosky, B.M., Henderson, B.G., Mellon, M.T.: 1993, Chaotic obliquity and the nature of the Martian climate, Bull. Am. Astron. Soc., 25, 1041Google Scholar
  38. Kinoshita, H., Nakai, H.: 1984, Motions of the perihelion of Neptune and Pluto, Cel. Mech. 34 203Google Scholar
  39. Klavetter, J.J.: 1989, Rotation of Hyperion. I. Observations Astron. J., 97(2), 570–579Google Scholar
  40. Kolmogorov, A.N.: 1954, On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian Dokl. Akad. Nauk. SSSR, 98, 469Google Scholar
  41. Kuiper, G. P.: 1951, On the origin of the solar system, in Astrophysics, J.A. Hyneck (Ed.), McGraw-Hill, New York, 357–427Google Scholar
  42. Lagrange, J. L.: 1776, Sur l'altération des moyens mouvements des planètes Mem. Acad. Sci. Berlin, 199 Oeuvres complètes VI 255 Paris, Gauthier-Villars (1869)Google Scholar
  43. Laplace, P.S.: 1772, Mémoire sur les solutions particulières des equations différentielles et sur les inégalités séculaires des planètes Oeuvres complètes 9 325 Paris, GauthierVillars (1895)Google Scholar
  44. Laplace, P.S.: 1784, Mémoire sur les inégalites séculaires des planètes et des satellites Mem. Acad. royale des Sciences de Paris, Oeuvres complètes XI 49 Paris, Gauthier-Villars (1895)Google Scholar
  45. Laplace, P.S.: 1785, Théorie de Jupiter et de Saturne Mem. Acad. royale des Sciences de Paris, Oeuvres complètes XI 164 Paris, Gauthier-Villars (1895)Google Scholar
  46. Laskar, J.: 1984, Thesis, Observatoire de ParisGoogle Scholar
  47. Laskar, J.: 1985, Accurate methods in general planetary theory, Astron. Astrophys. 144 133–146Google Scholar
  48. Laskar, J.: 1986, Secular terms of classical planetary theories using the results of general theory Astron. Astrophys. 157 59–70Google Scholar
  49. Laskar, J.: 1988, Secular evolution of the solar system over 10 million years, Astron. Astrophys. 198 341–362Google Scholar
  50. Laskar, J.: 1989, A numerical experiment on the chaotic behaviour of the Solar System Nature, 338, 237–238Google Scholar
  51. Laskar, J.: 1990, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88, 266–291Google Scholar
  52. Laskar, J.: 1992a, A few points on the stability of the solar system, in Chaos, Resonance and collective dynamical phenomena in the Solar System, Symposium IAU 152, S. Ferraz-Mello ed., 1–16, Kluwer, DordrechtGoogle Scholar
  53. Laskar, J.: 1992b, La stabilité du Système Solaire, in Chaos et Déteminisme, A. Dahan et al., eds., Seuil, ParisGoogle Scholar
  54. Laskar, J.: 1993a, Frequency analysis for multi-dimensional systems. Global dynamics and diffusion,Physica D 67 257–281Google Scholar
  55. Laskar, J.: 1993b, La Lune et Forigine de l'homme, Pour La Science, 186, avril 1993 Google Scholar
  56. Laskar, J.: 1994, Large scale chaos in the solar system, Astron. Astrophys. 287 L9-L12Google Scholar
  57. Laskar, J., Quinn, T., Tremaine, S.: 1992a, Confirmation of Resonant Structure in the Solar System, Icarus, 95, 148–152Google Scholar
  58. Laskar, J., Froeschlé, C., Celletti, A.: 1992b, The measure of chaos by the numerical analysis of the fundamental frequencies. Application to the standard mapping, Physica D, 56, 253–269Google Scholar
  59. Laskar, J. Robutel, P.: 1993, The chaotic obliquity of the planets, Nature, 361, 608–612Google Scholar
  60. Laskar, J., Joutel, F., Robutel, P.: 1993a, Stabilization of the Earth's obliquity by the Moon, Nature 361 615–617Google Scholar
  61. Laskar, J., Joutel, F., Boudin, F.: 1993b, Orbital, Precessional, and insolation quantities for the Earth from −20Myr to +10Myr, Astron. Astrophys 270 522–533Google Scholar
  62. Le verrier U.J.J.: 1856, Ann. Obs. Paris, II Mallet-Bachelet, ParisGoogle Scholar
  63. Levison, H.F., Duncan, M.J.: 1993, The gravitational sculpting of the Kuiper belt, Astrophys. J. Lett., 406, L35-L38Google Scholar
  64. Lissauer J.J., Safronov V.S.: 1991, The random component of planetary rotation, Icarus 93 288–297Google Scholar
  65. Lochak, P.: 1993, Hamiltonian perturbation theory: periodic orbits, resonances and intermittency, Nonlinearity, 6, 885–904Google Scholar
  66. Luu, J.: 1994, The Kuiper belt, in Symposium IAU 160, A. Milani, M. Di Martino, A. Cellino, eds, 31–44, Kluwer, DordrechtGoogle Scholar
  67. Morbidelli, A., Moons, M.: 1993, Secular resonances in mean motion commensurabilities: the 2/1 and 3/2 cases, Icarus 102 1–17Google Scholar
  68. Morbidelli, A., Giorgilli, A.: Superexponential stability of KAM tori, J. Stat. Phys. 78, (1995) 1607–1617Google Scholar
  69. Natenzon, M.Y., Neishtadt, A.I., Sagdeev, R.Z., Seryakov, G.K., Zaslavsky, G.M.: 1990, Chaos in the Kepler problem and long period comet dynamics, Phys. Lett. A, 145, 255–263Google Scholar
  70. Nekhoroshev, N.N.: 1977, An exponential estimates for the time of stability of nearly integrable Hamiltonian systems, Russian Math. Surveys, 32, 1–65Google Scholar
  71. Newhall, X. X., Standish, E. M., Williams, J. G.: 1983, DE102: a numerically integrated ephemeris of the Moon and planets spanning forty-four centuries, Astron. Astrophys. 125 150–167Google Scholar
  72. Niederman, L., 1994, Résonance et stabilité dans le problème planétaire Thesis, Paris 6 Univ.Google Scholar
  73. Nobili, A.M., Milani, A. and Carpino, M.: 1989, Fundamental frequencies and small divisors in the orbits of the outer planets, Astron. Astrophys. 210 313–336Google Scholar
  74. Peale S.J.: 1974, Possible History of the Obliquity of Mercury, Astron. J., 6, 722–744Google Scholar
  75. Peale S.J.: 1976, Inferences from the Dynamical History of Mercury's Rotation, Icarus, 28, 459–467Google Scholar
  76. Petrosky, T.Y.: 1986, Chaos and cometary clouds in the solar system, Phys. Lett. A, 117, 328–332Google Scholar
  77. Poincaré, H.: 1892–1899, Les Méthodes Nouvelles de la Mécanique Céleste, tomes I–III, Gauthier Villard, Paris, reprinted by Blanchard, 1987Google Scholar
  78. Poisson, S.D.: 1809, Sur les inégalités séculaires des moyens mouvements des planètes Journal de l'Ecole Polytechnique, VIII, 1Google Scholar
  79. Quinlan, G.: 1993, personal communication Google Scholar
  80. Quinlan, G.D.: 1992, Numerical experiments on the motion of the outer planets., Chaos, resonance and collective dynamical phenomena in the solar system Ferraz-Mello, S. 25–32 Kluwer Acad. Publ. IAU Symposium 152Google Scholar
  81. Quinn, T.R., Tremaine, S., Duncan, M.: 1991, ‘A three million year integration of the Earth's orbit,’ Astron. J. 101, 2287–2305Google Scholar
  82. Robutel, P.: 1995, Stability of the planetary three-body problem. II KAM theory and existence of quasiperiodic motions, Celes. Mech. 62, 219–261Google Scholar
  83. Safronov: 1969, Evolution of the protoplanetary cloud and formation of the Earth and the planets, Nauka, MoskvaGoogle Scholar
  84. Sagdeev, R.Z., Zaslavsky, G.M.: 1987, Stochasticity in the Kepler problem and a model of possible dynamics of comets in the OOrt cloud, Il Nuovo Cimento, 97B, 119–130Google Scholar
  85. Stephenson, F.R., Yau, K.K.C., Hunger, H.: 1984, Nature, 314, 587Google Scholar
  86. Stevenson, D.J.: 1987, Origin of the Moon. The collision hypothesis, Ann. Rev. Earth Planet. Sci. 15 271–315Google Scholar
  87. Sussman, G.J., and Wisdom, J.: 1988, ‘Numerical evidence that the motion of Pluto is chaotic.‘ Science 241, 433–437Google Scholar
  88. Sussman, G.J., and Wisdom, J.: 1992, ‘Chaotic evolution of the solar system’, Science 257, 56–62Google Scholar
  89. Torbett M.V., Smoluchovski, R.: 1990, Chaotic motion in a primordial comet disk beyond Neptune and comet influx to the solar system, Nature, 345, 49–51Google Scholar
  90. Touma, J., Wisdom, J.: 1993, ‘The chaotic obliquity of Mars‘, Science 259, 1294–1297Google Scholar
  91. Ward W.R.: 1974, Climatic Variations on Mars: 1. Astronomical Theory of Insolation, J. Geophys. Res., 79, 3375–3386Google Scholar
  92. Ward W.R., Rudy D.J.: 1991, Resonant Obliquity of Mars?, Icarus, 94, 160–164Google Scholar
  93. Wisdom, J.: 1983, Chaotic behaviour and the origin of the 3/1 Kirkwood gap, Icarus 56 51–74Google Scholar
  94. Wisdom, J.: 1985, A perturbative treatment of motion near the 3/1 commensurability, Icarus 63 272–289Google Scholar
  95. Wisdom, J.: 1987a, Rotational dynamics of irregularly shaped natural satellites, Astron. J. 94 (5) 1350–1360Google Scholar
  96. Wisdom, J.: 1987b, Chaotic dynamics in the solar system, Icarus 72 241–275Google Scholar
  97. Wisdom, J., Peale, S.J., Mignard, F.: 1984, The chaotic rotation of Hyperion, Icarus 58 137–152Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Jacques Laskar
    • 1
  1. 1.CNRS, Astronomic et Systèmes Dynamiques, Bureau des LongitudesFrance

Personalised recommendations