Journal of Atmospheric Chemistry

, Volume 8, Issue 3, pp 203–227 | Cite as

A photoelectric detector for the measurement of photolysis frequencies of ozone and other atmospheric molecules

  • Wolfgang Junkermann
  • Ulrich Platt
  • Andreas Volz-Thomas


Photoelectric detectors for the measurement of photolysis frequencies of different trace gases in the atmosphere are described. They exhibit uniform response characteristics over one hemisphere (2π sr) and wavelength characteristics closely matched to those of the photolysis frequencies JO1D, JNO2, and JNO3, respectively. Absolute calibration of the JO1D detector was performed by chemical actinometry with an accuracy of ±16 percent. Simultaneous measurements of JNO2 and JO1D are presented.

Key words

Atmosphere photolysis ozone nitrogen dioxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bahe F. C., Marx W. N., Schurath U., and Röth E. P., 1979, Determination of the absolute photolysis rate of ozone by sunlight, 225–1, at ground level Atmos. Environ. 13, 1515–1522.Google Scholar
  2. Bahe F. C., Schurath U., and Becker K. H., 1980, The frequency of NO2 photolysis at ground level, as recorded by a continuous actinometer, Atmos. Environ. 14, 711–718.Google Scholar
  3. Blackburn, T. T., 1984, Solar photolysis of ozone to singlet D oxygen atoms, O1D, Dissertation thesis, University of Michigan.Google Scholar
  4. Budde W., 1983, Physical detectors of optical radiation, in Optical Radiation Measurements, Vol 4, Academic Press, Orlando.Google Scholar
  5. Davidson J. A., Howard C. J., Schiff H. I., and Fehsenfeld F. C., 1979, Measurements of the branching ratios for the reaction of O(1D) with N2O, J. Chem. Phys., 70, 1697–1704.Google Scholar
  6. Dickerson R. R. Stedman D. H., Chameides W. L., Crutzen P. J., and Fishman J., 1979, Actinometric measurements and theoretical calculations of J(O3), the rate of photolysis of ozone to O(1D), Geophys. Res. Lett. 6, 833–836.Google Scholar
  7. Dickerson R. R., Stedman D. H., Chameides W. L., Crutzen P. J., and Fishman J., 1980, Correction to Dickerson et al. (1979), Geophys. Res. Lett. 7, 112.Google Scholar
  8. Dickerson R. R. and Stedman D. H., 1980, Precision of NO2 photolysis rate measurements, Environ. Sci. Technol., 14, 1261–1262.Google Scholar
  9. Dickerson R. R., Stedman D. H., and Delany A. C., 1982, Direct measurements of ozone and nitrogen dioxide photolysis rates in the troposphere, J. Geophys. Res. 87, 4933–4946.Google Scholar
  10. Dorn H.-P., Callies J., Platt U., and Ehhalt D. H., 1988, Measurement of tropospheric OH concentration by laser long-path absorption spectroscopy, Tellus 40B, 437–445.Google Scholar
  11. Drummond A. J. and Wade H., 1969, Instrumentation for the measurement of solar ultraviolet radiation, in F. Urbach (ed.), The Biological Effects of Ultraviolet Radiation, Pergamon Press, Oxford.Google Scholar
  12. Ghormley J. A., Ellsworth R. L., and Hochanadel C. J., 1973, Reaction of excited oxygen atoms with nitrous oxide. Rate constants for reaction of ozone with nitric oxide and nitrogen dioxide, J. Phys. Chem. 77, 1341–1345.Google Scholar
  13. Isaksen I. S. A., Midtbo K. H., Sunde J., and Crutzen P. J., 1977, A simplified method to include molecular scattering and reflection in calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11–26.Google Scholar
  14. JPL, 1985, NASA Panel for Data Evaluation, Chemical Kinetics and Photochemical Data for Use in Stratospheric Monitoring, Jet Propulsion Laboratory Publication 85–37, California Institute of Technology, Pasadena CA.Google Scholar
  15. Kajimoto O. and Cetanovic R. J., 1976, Temperature dependence of O(1D) production in the photolysis of ozone at 313 nm, Chem. Phys. Lett. 37, 533–536.Google Scholar
  16. Kelly T. J., Stedman D. H., Ritter J. A., and Harvey R. B., Measurements of oxide of nitrogen and nitric acid in clean air, J. Geophys. Res. 85, 7417–7425, 1980.Google Scholar
  17. Lam L., Hastie D. R., Ridley B. A., and Schiff H. I., 1981, Measurements of the relative rate constants for the quenching of O(1D) atoms by N2O and N2 and the branching ratio of the N2O reaction at 23 and-96°C, J. Photochem. 15, 119–130.Google Scholar
  18. Levy H., 1971, Normal atmosphere: Large radical and formaldehyde concentrations predicted, Science 173, 141–143.Google Scholar
  19. Logan J. A., Prather M. J., Wofsy S. C., and McElroy M. B., 1981, Tropospheric chemistry: a global perspective, J. Geophys. Res. 86, 7210–7254.Google Scholar
  20. Madronich S., 1987a, Intercomparison of NO2 photodissociation and UV radiometer measurements, Atmos. Environ. 21, 569–578.Google Scholar
  21. Madronich S., 1987b, Photodissociation in the atmosphere, 1, Actinic flux and the effects of ground reflections and clouds, J. Geophys. Res. 92, 8740–9752.Google Scholar
  22. Marx W., Bahe F., and Schurath U., 1979, The NO yield of O(1D)+N2O as function of kinetic energy, Ber Bunsenges. Phys. Chem. 83, 225–230.Google Scholar
  23. Meier R. R., Anderson D. E., and Nicolet M., 1982, Radiation field in the troposphere and stratosphere from 240–1000 NM-I: general analysis, Planet. Space Sci., 30, 923–933.Google Scholar
  24. Moortgat G. K., Kudszus E., and Warneck P., 1977, Temperature dependence of O(1D) formation in the near UV photolysis of ozone, J. Chem. Soc. Faraday Trans. 2, 1216–1221.Google Scholar
  25. Muramatsu, H., Makino, Y., Hirota, M., Sasaki, T., Sekine, M., Kobayashi, M., Asano, S., and Chubachi, S., 1984, Estimation of the stratospheric ozone change, Meteorol. Res. Inst. Tsukuba, T-305, Japan.Google Scholar
  26. Parrish D. D., Murphy P. C., Albritton D. L., and Fehsenfeld F. C., 1983, The measurement of the photodissociation rate of NO2 in the atmosphere, Atmos. Environ. 17, 1365–1379.Google Scholar
  27. Parrish D. D., Trainer M., Williams E. J., Fahey D. W., Hübler G., Eubank C. S., Liu S. C., Murphy P.C., Albritton D. L., and Fehsenfeld F. C., 1986, Measurements of the NOx−O3 photostationary state at Niwot Ridge, Colorado, J. Geophys. Res. 91, 5361–5370.Google Scholar
  28. Perner D., Platt U., Trainer M., Hübler G., Drummond J., Junkermann W., Rudolph J., Schubert B., Volz A., Ehhalt D. H., Rumpel K. J., and Helas G., 1987, Measurements of tropospheric OH concentrations: a comparison of field data with model predictions, J. Atmos. Chem. 5, 185–216.Google Scholar
  29. Platt U., Rateike M., Junkermann W., Rudolph J., and Ehhalt D. H., 1988, New tropospheric OH measurements, J. Geophys. Res. 93, 5159–5166.Google Scholar
  30. Ritter J. A., Stedman D. H., Dickerson R. R., and Blackburn T. E., 1987, Dependence of J[O3-O(1D)] on the choice of extraterrestrial solar irradiance data, Environ. Sci. Tech. 21, 505–508.Google Scholar
  31. Röth, E. P., 1986, Description of a one-dimensional model for atmospheric chemistry, KFA Jülich, Kül-2098.Google Scholar
  32. Schiller, C., 1987, Messung des Photonenflusses um 300 nm zur Untersuchung der O(1D) Produktion durch O3 Photolyse in der Stratosphäre, Diplomarbeit, Univ. Bonn.Google Scholar
  33. Simonaitis R., Greenberg R. I., and Heicklen J., 1972, The photolysis of N2O at 2139 Å and 1849 Å, Int. J. Chem. Kin. 4, 497–512.Google Scholar
  34. Volltrauer H. N., Felder W., Pirkle R. J., and Fontijn A., 1979, O(1D)/N2O branching ratio at 290 K, J. Photochem. 11, 173–181.Google Scholar
  35. Volz A., Mihelcic D., Müsgen P., Pätz H. W., Pilwat G., Geiss H., and Kley D., 1988, Ozone production in the Black Forest: Direct measurements of RO2, NOxand other relevant parameters, in I. S. A. Isaksen (ed.), Tropospheric Ozone, Reidel, Dordrecht, pp. 293–302.Google Scholar
  36. Zafonte L., Rieger P. L., and Jolmes J. R., 1977, Nitrogen dioxide photolysis in the Los Angeles atmosphere, Environ. Sci. Technol. 11, 483.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Wolfgang Junkermann
    • 1
  • Ulrich Platt
    • 1
  • Andreas Volz-Thomas
    • 2
  1. 1.Kernforschungsanlage JülichInstitut für Chemie 3F.R. Germany
  2. 2.Institut für Chemie 2Kernforschungsanlage JülichF.R. Germany

Personalised recommendations