Skip to main content
Log in

Influence of antihypertensive therapy with cilazapril and hydrochlorothiazide on the stiffness of the aorta

  • Hypertension
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

The purpose of this study was to examine the effects of the angiotensin-converting enzyme (ACE) inhibitor cilazapril on the elastic properties of the aorta. A standard diuretic antihypertensive drug, hydrochlorothiazide, served for comparisons. Increased aortic stiffness leads to a reduction of the buffering windkessel function and is a major component in the pathophysiology of systolic hypertension, inducing an increase in left ventricular afterload and arterial pulsatile stress as well as a decrease in the subendocardial blood supply. Stiffness of arteries increases with age and blood pressure, and depends on the functional elastic structures of the aortic wall. ACE inhibitors have been shown to directly influence elastic properties of peripheral arteries. Seventeen patients with mild to moderate essential hypertension (age 45–67 years) were treated for 3 months double-blind randomized with either cilazapril (C) 5 mg daily (n=9) or hydrochlorothiazide (HCTZ) 25 mg daily (n=8). Aortic elastic properties were noninvasively assessed by measurement of pulse wave velocity along the aorta at rest and during isometric handgrip stress. Accelerated pulse wave velocity indicates elevated arterial stiffness and vice versa. A pressure standardized index of aortic cross-sectional distensibility (2 m) was calculated from arterial mean pressure and pulse wave velocity. Compared with pretreatment values, both therapies significantly reduced blood pressure and pulse wave velocity at rest (C: 9.4±0.9 vs. 7.7±0.7 m/sec; HCTZ: 8.9±0.3 vs. 7.8±0.4 m/sec; means ± SEM p<0.05). During isometric stress only C showed a significant decrease in pulse wave velocity (C: 11.3±0.8 vs. 9.1±0.8 m/sec; HCTZ: 9.9±0.5 vs. 9.0±0.5 m/sec; means ± SEM p<0.05). The index 2m at rest and during handgrip increased significantly (p<0.05) after C but not after HCTZ. With cilazapril we obtained steeper slopes for the treatment-induced reductions in blood pressure and pulse wave velocity for both rest and handgrip stress values. Correlation of the data at rest and during stress revealed a direct relationship between blood pressure and pulse wave velocity. HCTZ linearly extended the relation observed before treatment toward lower values of blood presure and corresponding pulse wave velocity without changing the relation per se. Cilazapril, in contrast, moved the relation between these variables and decelerated the pulse wave velocities to a greater extent than would have been expected from the corresponding blood pressure reduction (delta approximately 1 m/sec). These results in patients with mild to moderate essential hypertension support the idea that ACE inhibitors, in addition to reducing blood pressure, may exert an additional hemodynamic effect in improving the elastic properties of the aorta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Opie LH. ACE inhibitors, vascular structure, and arterial disease in hypertension. In: Opie LH, ed. Angiotensin-Converting Enzyme Inhibitors: Scientific Basis for Clinical Use. New York: Wiley-Liss, 1992:212–235.

    Google Scholar 

  2. Belz GG. Clinical relevance of elastic properties and Windkessel function of the aorta. Cardiovasc Drugs Ther 1995; 9:73–83.

    Article  PubMed  CAS  Google Scholar 

  3. Perret F, Mooser V, Hayoz D, et al. Evaluation of arterial compliance-pressure curves. Hypertension 1991;18(Suppl): II77-II83.

    PubMed  CAS  Google Scholar 

  4. Simon AC, Levenson J, Chau NP, Pithois-Merli I. Role of arterial compliance in the physiopharmacological approach to human hypertension. J Cardiovasc Pharmacol 1992; 19(Suppl 5):S11-S20.

    PubMed  Google Scholar 

  5. Wiggers CJ. The circulation and circulation research in perspective. In: Hamilton WF, Dow P, eds. Handbook of Physiology. Washington DC: American Society of Physiology, 1962:1–10. (Section 2, Circulation, Vol. 1)

    Google Scholar 

  6. O'Rourke M. Arterial stiffness, systolic blood pressure, and logical treatment of arterial hypertension. Hypertension 1990;15:339–347.

    PubMed  Google Scholar 

  7. Simon AC, O'Rourke M, Levenson J. Arterial distensibility and its effect on wave reflection and cardiac loading in cardiovascular disease. Cor Art Dis 1991;2:1111–1120.

    Google Scholar 

  8. Watanabe H, Ohtsuka S, Kakihana M, Sugishita Y. Coronary circulation in dogs with an experimental decrease in aortic compliance. J Am Coll Cardiol 1993;21:1497–1506.

    PubMed  CAS  Google Scholar 

  9. Stefanadis C, Stratos C, Boudoulas H, Kourouklis C, Toutouzas P. Distensibility of the ascending aorta: Comparison of invasive and non-invasive techniques in healthy men and in men with coronary artery disease. Eur Heart J 1990;11: 990–996.

    PubMed  CAS  Google Scholar 

  10. Lehmann ED, Gosling RG, Parker JR, deSilva T, Taylor MG. A blood pressure independent index of aortic distensibility. Br J Radiol 1993;66:126–131.

    Article  PubMed  CAS  Google Scholar 

  11. Dart AM, Lacombe F, Yeoh JK, et al. Aortic distensibility in patients with isolated hypercholesterolaemia, coronary artery disease, or cardiac transplant. Lancet 1991;338: 270–273.

    Article  PubMed  CAS  Google Scholar 

  12. Mulvany MJ. A reduced elastic modulus of vascular wall components in hypertension? Hypertension 1992;20:7–9.

    PubMed  CAS  Google Scholar 

  13. Bramwell JC, Downing AC, Hill AV. The effect of blood pressure on the extensibility of the human artery. Heart 1923;10:289–300.

    Google Scholar 

  14. Schimmler W. Untersuchungen zu Elastizitätsproblemen der Aorta. Statistische Korrelation der Pulswellengeschwindigkeit zu Alter, Geschlecht und Blutdruck. Arch Kreislaufforsch 1965;47:188–233.

    Article  Google Scholar 

  15. Slama MA, Benetos A, Pannier B, et al. Study of noninvasive methods of investigating the elastic properties of the thoracic aorta. Arch Mal Coeur Vaiss 1992;85(Suppl): 47–50.

    PubMed  Google Scholar 

  16. Stratos C, Stefanadis C, Kallikazaros I, Boudoulas H, Toutouzas P. Ascending aorta distensibility abnormalities in hypertensive patients and response to nifedipine administration. Am J Med 1992;93:505–512.

    Article  PubMed  CAS  Google Scholar 

  17. Cabrera E, Levenson J, Armentano R, Barra J, Pichel R, Simon A. Constricting and stiffening action of atropine on aortic response to angiotensin in dogs. Hypertension 1988; 11(Suppl I):I103-I107.

    PubMed  CAS  Google Scholar 

  18. Breithaupt K, Belz GG, Sinn W. Non-invasive assessments of compliance of the aortic windkessel in man derived from pulse pressure/storage volume ratio and from pulse wave velocity. Clin Physiol Biochem 1992;9:18–25.

    PubMed  CAS  Google Scholar 

  19. Simon AC, Levenson JA, Bouthier J, Maarek B, Safar ME. Effects of acute and chronic angiotensin-converting enzyme inhibition on large arteries in human hypertension. J Cardiovasc Pharmacol 1885;7:S45-S51.

    Article  Google Scholar 

  20. Watkins RW, Sybertz EJ, Antonellis A, Pula K. Effects of spiraprilic acid, an angiotensin converting enzyme inhibitor, on large artery compliance in anesthetized dogs. Arch Int Pharmacodyn Ther 1987;290:222–234.

    PubMed  CAS  Google Scholar 

  21. Fleckenstein A, Fleckenstein-Grün G, Frey M, Zorn J. Calcium antagonism and ACE inhibition. Two outstandingly effective means of interference with cardiovascular calcium overload, high blood pressure and arteriosclerosis in spontaneously hypertensive rats. Am J Hypertens 1989;2:194–204.

    PubMed  CAS  Google Scholar 

  22. Thomas JR, Asmar RG, Safar ME. Effects of perindopril on structural and functional changes in hypertensive arteries. S Afr Med J 1991;(Suppl):6–9.

  23. Brunel P, Guyene TT, Howald H, Menard J. Arterial and endocrine effects of a combination of an angiotensin converting enzyme inhibitor and a vasodilator in normotensive healthy volunteers. J Cardiovasc Pharmacol 1991;18:175–181.

    Article  PubMed  CAS  Google Scholar 

  24. Rubanyi GM, Kauser K, Gräser T. Effect of cilazapril and indomethacin on endothelial dysfunction in the aortas of spontaneously hypertensive rats. J Cardiovasc Pharmacol 1993;22(Suppl 5):S23-S30.

    Article  PubMed  CAS  Google Scholar 

  25. De Cesaris R, Ranieri G, Filitti V, Andriani A, Bonfantino MV. Forearm arterial distensibility in patients with hypertension: Comparative effects of long-term ACE inhibition and β-blocking. Clin Pharmacol Ther 1993;53:360–367.

    PubMed  Google Scholar 

  26. Belz GG, Breithaupt K, Erb K, Kleinbloesem CH, Wolf GK. Influence of the angiotensin converting enzyme inhibitor cilazapril, the \-blocker propranolol and their combination on haemodynamics in hypertension. J Hypertens 1989; 7:817–824.

    Article  PubMed  CAS  Google Scholar 

  27. Safar ME, Levy BL, Laurent S, London GM. Hypertension and the arterial system Clinical and therapeutic aspects. J Hypertens 1990;8(Suppl 7):S113-S119.

    CAS  Google Scholar 

  28. Wellstein A, Belz GG, Palm D. Beta-adrenoceptor subtype binding activity in plasma and beta blockade by propranolol and beta-1 selective bisoprolol in humans. Evaluation with Schild-plots. J Pharmacol Exp Ther 1988;246:328–337.

    PubMed  CAS  Google Scholar 

  29. Leschinger MI, Breithaupt K, Belz GG. Aufdeckung der Hypertonie ohne gro\en Aufwand. Herz Gefäße 1991;11:41–44.

    Google Scholar 

  30. Breithaupt K, Erb KA, Neumann B, Wolf GK, Belz GG. Comparison of four noninvasive techniques to measure stroke volume: Dual-beam Doppler echoaortography, electrical impedance cardiography, mechanosphygmography and M mode echocardiography on the left ventricle. Am J Noninvas Cardiol 1990;4:203–209.

    Google Scholar 

  31. Sinn W. Die Elastizität der Arterien und ihre Bedeutung für die Dynamik des arteriellen Systems. Akad Wiss Lit Mainz 1956;11:1–190.

    Google Scholar 

  32. Wezler K, Böger A. Die Dynamik des arteriellen Systems. Ergebn Physiol 1939;41:292–606.

    Google Scholar 

  33. Frank O. Die Elastizität der Blutgefäße. Z Biol 1920;71:255–272.

    Google Scholar 

  34. Lehmann ED, Gosling RG, Fatemi-Langroudi B, Taylor MG. Non-invasive Doppler ultrasound technique for the in vivo assessment of aortic compliance. J Biomed Eng 1992; 14:250–256.

    Article  PubMed  CAS  Google Scholar 

  35. Lehmann ED, Parker JR, Hopkins KD, Taylor MG, Gosling RG. Validation and reproducibility of pressure-corrected aortic distensibility measurements using pulse-wave-velocity Doppler ultrasound. J Biomed Eng 1993;15: 221–228.

    Article  PubMed  CAS  Google Scholar 

  36. Nichols WW, O'Rourke M. eds. McDonald's Blood Flow in Arteries, 3rd ed. London: Lea and Febiger, 1990.

    Google Scholar 

  37. Hirata K, Triposkiadis F, Sparks E, Bowen J, Wooley CF, Boudoulas H. The Marfan syndrome: Abnormal aortic elastic properties. J Am Coll Cardiol 1991;18:57–63.

    Article  PubMed  CAS  Google Scholar 

  38. de Simone G, Moccia D, Lorenzo LD, Buonissimo S, Costantino G, de Divitiis O. Echocardiographic assessment of arterial impedance: Relation to anatomic left ventricular patterns in systemic hypertension. Am J Noninvas Cardiol 1988;2:232–237.

    Google Scholar 

  39. Gudbrandsson T, Julius S, Krause L, et al. Correlates of the estimated arterial compliance in the population of Tecumseh, Michigan. Blood Pressure 1992;1:27–34.

    Article  PubMed  CAS  Google Scholar 

  40. Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: The effects of age, training, and coronary artery disease. Br Heart J 1989;62:90–96.

    Article  PubMed  CAS  Google Scholar 

  41. O'Rourke M, Taylor MG. Input impedance of the systemic circulation. Circ Res 1967;20:365–380.

    PubMed  Google Scholar 

  42. Kromer EP, Elsner D, Holmer SR, Müntze A, Riegger GAJ. Aortic input impedance and neurohormonal activation in patients with mild to moderate chronic congestive heart failure. Cardiovasc Res 1992;26:265–272.

    Article  PubMed  CAS  Google Scholar 

  43. Kelly RP, Ting CT, Yang TM, et al. Effective arterial elastance as index of arterial vascular load in humans. Circulation 1992;86:513–521.

    PubMed  CAS  Google Scholar 

  44. Bramwell JC, Hill AV. Velocity of transmission of the pulse wave and elasticity of arteries. Lancet 1922;1:891–892.

    Article  Google Scholar 

  45. McDonald DA. Regional pulse-wave velocity in the arterial tree. J Appl Physiol 1968;24:73–78.

    PubMed  CAS  Google Scholar 

  46. Maarek B, Simon AC, Levenson J, Pithois-Merli I, Bouthier J. Heterogeneity of the atherosclerotic process in systemic hypertension poorly controlled by drug treatment. Am J Cardiol 1987;59:414–417.

    Article  PubMed  CAS  Google Scholar 

  47. Hamayaki T, Urakaze M, Sawazaki S, Yamazaki K, Taki H, Yano S. Comparison of pulse wave velocity of the aorta between inhabitants of fishing and farming villages in Japan. Atherosclerosis 1988;73:157–160.

    Article  Google Scholar 

  48. Farrar DJ, Bond MG, Riley WA, Sawyer JK. Anatomic correlates of aortic pulse wave velocity and carotid artery elasticity during atherosclerosis progression and regression in monkeys. Circulation 1991;83:1754–1763.

    PubMed  CAS  Google Scholar 

  49. Ochi H, Shimada T, Ikuma I, Morioka S, Moriyama K. Effect of a decrease in aortic compliance on the isovolumic relaxation period of the left ventricle in man. Am J Noninvas Cardiol 1991;5:149–154.

    Google Scholar 

  50. O'Rourke MF. Pulse wave mechanics revisited: Relevance to therapy of cardiovascular disease with calcium antagonists. Heart Vessels 1992;7:113–122.

    Article  PubMed  Google Scholar 

  51. Lehmann ED, Gosling RG. Measuring aortic distensibility. Lancet 1991;338:1075.

    Article  PubMed  CAS  Google Scholar 

  52. Ting CT, Zang TM, Chen JW, Chang MS, Yin FCP. Arterial hemodynamics in human hypertension. Effects of angiotensin converting enzyme inhibition. Hypertension 1993;22: 839–846.

    PubMed  CAS  Google Scholar 

  53. Levenson J, Gariepy J, Megnien L, Merli IP, Simon A. Diuretics and arterial compliance in human hypertension. Eur Heart J 1992;13(Suppl G):48–52.

    PubMed  Google Scholar 

  54. Asmar RG, Benetos A, Chaouche-Teyara, Raveau-Landon CM, Safar ME. Comparison of effects of felodipine versus hydrochlorothiazide on arterial diameter and pulse-wave velocity in essential hypertension. Am J Cardiol 1993;72: 794–798.

    Article  PubMed  CAS  Google Scholar 

  55. De Cesaris R, Rahien G, Filitti V, Andriani A. Large artery compliance in essential hypertension. Effects of calciumantagonism and beta-blocking. Am J Hypertens 1992;5:624–628.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breithaupt-Grögler, K., Leschinger, M., Belz, G.G. et al. Influence of antihypertensive therapy with cilazapril and hydrochlorothiazide on the stiffness of the aorta. Cardiovasc Drug Ther 10, 49–57 (1996). https://doi.org/10.1007/BF00051130

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00051130

Key Words

Navigation