Skip to main content
Log in

Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The purpose of this study was to make a prognosis of the effects of extended purification of terrestrial waste water, reaching the Wadden Sea by the River Rhine and Lake IJssel, on the phosphate concentration in the western Wadden Sea.

The quantities of different phosphorus fractions in intertidal and subtidal sediments of the Marsdiep tidal basin (western Dutch Wadden Sea) were measured. Different methods are applied to determine the amount of phosphorus that can be released from these sediments. The direct bioavailability is determined by inoculating sediment suspensions with a natural mixture of precultured micro-organisms from the sampling area. A second approach is the measurement of the phosphate release under different redox conditions. Sequential extraction of sediment samples with different solvents is also applied. Under the present conditions and compared to the nutrient loads from fresh water (Lake IJssel) and from the North Sea, the phosphorus stored in the sediments of the western Dutch Wadden Sea plays a minor role in the total supply to micro-algae and bacteria. The bulk of the biologically available phosphorus in the sediments originates from the metal-associated fraction. Releasable phosphate may contribute to the local annual primary production to an extent of ca 45 to ca 150 g C m−2 a−1. The total amount of phosphorus in the sediment (mainly calcite associated) is twice to 6 times the biologically available amount.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Admiraal, W. & D. Werner, 1983. Utilization of limiting concentrations of orthophosphate and production of extracellular organic phosphates in cultures of marine diatoms. J. Plankton Res. 5: 495–513.

    Google Scholar 

  • Bakker, J. F. & W. Helder, in press. Skagerrak (northeastern North Sea). Oxygen micro profiles and pore water chemistry in sediments. Marine Geology, special issue on the Skagerrak.

  • Balzer, W., H. Erlenkeuser, M. Hartmann, P. J. Müller & F. Pollehne, 1987. In: J. Rumohr, E. Walger & B. Zeitzschel (eds), Lecture notes on coastal and estuarine studies, Springer-Verlag, Berlin, 112–158.

    Google Scholar 

  • Boynton, W. R., W. M. Kemp, 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar. Ecol. Progr. Ser. 23: 45–55.

    Google Scholar 

  • Bray, J. T., O. P. Bricker & B. N. Troup, 1973. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364.

    Google Scholar 

  • Cadée, G. C., 1986. Increased phytoplankton primary production in the Marsdiep area (western Dutch Wadden Sea). Neth. J. Sea Res. 20: 285–290.

    Google Scholar 

  • Cadée, G. C. & J. Hegeman, 1974. Primary production of phytoplankton in the Dutch Wadden Sea. Neth. J. Sea Res. 8: 240–259.

    Google Scholar 

  • Cadée, G. C. & J. Hegeman, 1977. Distribution of primary production of the benthic microflora and accumulation of organic matter on a tidal flat area, Balgzand, Dutch Wadden Sea. Neth. J. Sea Res. 11: 24–41.

    Google Scholar 

  • Cadée, G. C. & J. Hegeman, 1979. Phytoplankton primary production, chlorophyll and composition in an inlet of the western Dutch Wadden Sea (Marsdiep). Neth. J. Sea Res. 13: 224–241.

    Google Scholar 

  • Canfield, D. E., 1989. Reactive iron in marine sediments. Geochim. Cosmochim. Acta 53: 619–632.

    Google Scholar 

  • De Jonge, V. N., 1990. Response of the Dutch Wadden Sea ecosystem to phosphorus discharges from the River Rhine. In D. S. McLusky, V. V. de Jonge & J. Pomfret (eds), North Sea-Estuaries Interaction. Developments n in Hydrobiology 55. Kluwer Academic Publishers, Dordrecht: 49–62. Reprinted from Hydrobiologia 195.

    Google Scholar 

  • De Jonge, V. N., 1992. Physical processes and dynamics of microphytobenthos in the Ems estuary (The Netherlands). Ph. D. Thesis, Groningen, 195 pp.

  • De Jonge, V. N. & H. Postma, 1974. Phosphorus compounds in the Dutch Wadden Sea. Neth. J. Sea Res. 8: 139–153.

    Google Scholar 

  • Duursma, E. K., 1961. Dissolved organic carbon, nitrogen and phosphorus in the sea. Neth. J. Sea Res. 1: 3–147.

    Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim Acta 43: 1075–1090.

    Google Scholar 

  • Golterman, H., 1977. The role of iron in the exchange of phosphate between water and sediments. In: H. L. Golterman (ed.), Interactions between sediments and fresh water. Dr W. Junk Publishers, The Hague: 286–293.

    Google Scholar 

  • Groot, C. de, 1990. Some remarks on the presence of organic phosphates in sediments. In D. J. Bonin & H. L. Golterman (eds), Fluxes between Trophic Levels and through the Water-Sediment Interface. Developments in Hydrobiology 62. Kluwer Academic Publishers, Dordrecht: 303–309. Reprinted from Hydrobiologia.

    Google Scholar 

  • Hieltjes, A. H. M. & L. Lijklema, 1980. Fractionation of inorganic phosphorus in calcareous sediments. J. Envir. Qual. 9: 405–407.

    Google Scholar 

  • Kolbe, K., 1991. Zum Auftreten ‘schwarzer Flecken’, oberflächlich anstehender, reduzierter Sedimente, im ostfriesischen Wattenmeer. Report Niedersächsisches Landesamt für Wasser und Abfall, Forschungsstelle Küste Norderney, 24 pp.

  • Krom, M. D. & R. A. Berner, 1981. The diagenesis of phosphorus in a nearshore marine sediment. Geochim. Cosmochim. Acta 45: 207–216.

    Google Scholar 

  • Lijklema, L., 1977. The role of iron in the exchange of phosphate between water and sediments. In: H. L. Golterman (ed.), Interactions between sediments and fresh water. Dr W. Junk Publishers, The Hague: 313–317.

    Google Scholar 

  • Lijklema, L., 1980. Interaction of orthophosphate with iron(III) and aluminium hydroxides. Environ. Sci. Technol. 14: 537–541.

    Google Scholar 

  • Lowry, O. H., N. J. Roseborough, A. L. Farr & R. J. Randall, 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.

    Google Scholar 

  • Myers, C. R. & K. H. Nealson, 1988. Microbial reduction of manganese oxides: interactions with iron and sulphur. Geochim. Cosmochim. Acta 52: 2727–2732.

    Google Scholar 

  • Parfitt, R. L., R. J. Atkinson & R. S. C. Smart, 1975. The mechanism of phosphate fixation by iron oxides. Soil Sci. Soc. Amer. Proc. 39: 837–841.

    Google Scholar 

  • Postma, H., 1954. Hydrography of the Dutch Wadden Sea. Arch. néerl. Zool. 10: 405–511.

    Google Scholar 

  • Postma, H., 1967. Sediment transport and sedimentation in the estuarine environment. In: G. H. Lauff (ed.), Estuaries. Am. Assoc. Adv. Sci. Publ. 83: 158–184.

  • Postma, H. & J. W. Rommets, 1970. Primary production in the Wadden Sea. Neth. J. Sea Res. 4: 470–493.

    Google Scholar 

  • Psenner, R. & R Pucsko, 1988. Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Arch. Hydrobiol. Beih. Ergebn. Limnol. 30: 43–59.

    Google Scholar 

  • Raaphorst, W. van & H. W. van der Veer, 1990. The phosphorus budget of the Marsdiep tidal basin (Dutch Wadden Sea) in the period 1950–1985: importance of the exchange with the North Sea. In D. S. McLusky, V. V. de Jonge & J. Pomfret (eds), North Sea-Estuaries Interaction. Developments in Hydrobiology 55. Kluwer Academic Publishers, Dordrecht: 21–38. Reprinted from Hydrobiologia 195.

    Google Scholar 

  • Rajendran, A., S. Gupta & J. F. Bakker, 1992. Control of manganese and iron in Skagerrak sediments. Chem. Geology, 09: 111–129.

    Google Scholar 

  • Ridderinkhof, H. & J. T. F. Zimmerman, 1990. Residual currents in the western Dutch Wadden Sea. In: R. T. Cheng (ed.) Residual currents and long-term transport. Coastal and Estuarine Studies 38. Springer-Verlag, New York: 93–104.

    Google Scholar 

  • Sherwood, B. A., S. L. Sager & H. D. Holland, 1987. Phosphorus in foraminiferal sediments from North Atlantic Ridge cores and in pure limestones. Geochim. Cosmochim. Acta 51: 1861–1866.

    Google Scholar 

  • Suess, E., 1976. Nutrients near the depositional interface. In: I. N. McCave (ed.), The benthic boundary layer. Plenum Press, New York: 57–79.

    Google Scholar 

  • Sundby, B. & N. Silverberg, 1985. Manganese fluxes in the benthic boundary layer. Limnol. Oceanogr. 30: 372–381.

    Google Scholar 

  • Sundby, B, C. Gobeil, N. Silverberg & A. Mucci, 1992. The phosphorus cycle in coastal marine sediments. Limnol Oceanogr. 37: 1129–1145.

    Google Scholar 

  • Veldhuis, M. J. W., F. Colijn, L. A. H. Venekamp & L. A. Villerius, 1988. Phytoplankton primary production and biomass in the western Dutch Wadden Sea (The Netherlands); a comparison with an ecosystem model. Neth. J. Sea Res. 22: 37–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jonge, V.N., Engelkes, M.M. & Bakker, J.F. Bio-availability of phosphorus in sediments of the western Dutch Wadden Sea. Hydrobiologia 253, 151–163 (1993). https://doi.org/10.1007/BF00050735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00050735

Key words

Navigation