The evolution of stochastic strategies in the Prisoner's Dilemma

Abstract

The evolution of reactive strategies for repeated 2×2-games occurring in biology is investigated by means of an adaptive dynamics.

This is a preview of subscription content, log in to check access.

References

  1. Aumann, R. J. (1981), Survey of repeated games, in R. J. Aumann et al. (eds.), Essays in Game Theory and Mathematical Economics in Honor of Oscar Morgenstern.

  2. Axelrod, R. (1984), The Evolution of Cooperation, Basic Books, New York.

    Google Scholar 

  3. Axelrod, R. and Hamilton, W. D. (1981), The evolution of cooperation, Science 211, 1390–1396.

    Google Scholar 

  4. Axelrod, R. and Dion, D. (1988), The further evolution of cooperation, Science 242, 1385–1390.

    Google Scholar 

  5. Axelrod, R. (1987), The evolution of strategies in the iterated prisoner's dilemma in Davis, D. (ed.), Genetic Algorithms and Simulated Annealing, Pitman, London.

    Google Scholar 

  6. Boyd, R. and Lorberbaum, J. P. (1987), No pure strategy is evolutionarily stable in the Repeated Prisoner's Dilemma, Nature 327, 58–59.

    Google Scholar 

  7. Boyd, R. (1989), Mistakes allow evolutionary stability in the repeated prisoner's dilemma game, J. Theoret. Biol. 136, 47–56.

    Google Scholar 

  8. Donninger, C. (1986), Is it always efficient to be nice? in A., Dieckmann and P., Mitter (eds.) Paradoxical Effects of Social Behaviour: Essays in Honor of Anatol Rapoport, Physica, Heidelberg, pp. 123–134.

    Google Scholar 

  9. Eshel, I. and Motro, A. (1981), Kin selection and strong evolutionary stability of mutual help, Theoret. Population Biol 19, 420–433.

    Google Scholar 

  10. Feldman, M. and Thomas, E. (1987), Behavior-dependent contexts for repeated plays of the prisoner's dilemma II: Dynamical aspects of the evolution of cooperation, J. Theoret. Biol. 128, 297–315.

    Google Scholar 

  11. Hofbauer, J. and Sigmund, K. (1988), Dynamical Systems and the Theory of Evolution, Cambridge University Press.

    Google Scholar 

  12. Hofbauer, J. and Sigmund, K. (1990), Adaptive dynamics and evolutionary stability, to appear in Letters Appl. Math.

  13. May, R. M. (1987), More evolution of cooperation, Nature 327, 15–17.

    Google Scholar 

  14. Maynard Smith, J. (1982), Evolution and the Theory of Games, Cambridge University Press.

  15. Milinski, M. (1987), Tit for Tat in sticklebacks and the evolution of cooperation, Nature 325, 434–435.

    Google Scholar 

  16. Molander, P. (1985), The optimal level of generosity in a selfish, uncertain environment, J. Conflict Resolut. 29, 611–618.

    Google Scholar 

  17. Müller, U. (1987), Optimal Retaliation for Optimal Cooperation, J. Conflict Resolution 31, 692–724.

    Google Scholar 

  18. Nowak, M. and Sigmund, K. (1989a), Oscillations in the Evolution of Reciprocity, J. Theor. Biol., 137, 21–26.

    Google Scholar 

  19. Nowak, M. and Sigmund, K. (1989b), Game dynamical aspects of the Prisoner's Dilemma, J. Appl. Math. Comp. 30, 191–213.

    Google Scholar 

  20. Nowak, M. (1990), An evolutionarily stable strategy may be inaccessible, Theoret Population Biol. 142, 237–241.

    Google Scholar 

  21. Selten, R. and Hammerstein, P. (1984), Gaps in Harley's argument on evolutionarily stable learning rules and in the logic of TFT, Behavioural and Brain Sci. 7, 115–116.

    Google Scholar 

  22. Selten, R. (1975), Reexamination of the perfectness concept for equilibrium points in extensive games, Internat. J. Game Theory 4, 25–55.

    Google Scholar 

  23. Smale, S. (1980), The prisoner's dilemma and dynamical systems associated to non-cooperative games, Econometrica 48, 1617–1634.

    Google Scholar 

  24. Wilkinson, G. S. (1984), Reciprocal food sharing in the vampire bat, Nature 308, 181–184.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nowak, M., Sigmund, K. The evolution of stochastic strategies in the Prisoner's Dilemma. Acta Appl Math 20, 247–265 (1990). https://doi.org/10.1007/BF00049570

Download citation

AMS subject classifications (1980)

  • 34C35
  • 90D15
  • 80D45
  • 92A12

Key words

  • Prisoner's Dilemma
  • reactive strategies
  • iterated games
  • adaptive dynamics