Acta Applicandae Mathematica

, Volume 20, Issue 3, pp 247–265 | Cite as

The evolution of stochastic strategies in the Prisoner's Dilemma

  • Martin Nowak
  • Karl Sigmund


The evolution of reactive strategies for repeated 2×2-games occurring in biology is investigated by means of an adaptive dynamics.

AMS subject classifications (1980)

34C35 90D15 80D45 92A12 

Key words

Prisoner's Dilemma reactive strategies iterated games adaptive dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumann, R. J. (1981), Survey of repeated games, in R. J. Aumann et al. (eds.), Essays in Game Theory and Mathematical Economics in Honor of Oscar Morgenstern.Google Scholar
  2. Axelrod, R. (1984), The Evolution of Cooperation, Basic Books, New York.Google Scholar
  3. Axelrod, R. and Hamilton, W. D. (1981), The evolution of cooperation, Science 211, 1390–1396.Google Scholar
  4. Axelrod, R. and Dion, D. (1988), The further evolution of cooperation, Science 242, 1385–1390.Google Scholar
  5. Axelrod, R. (1987), The evolution of strategies in the iterated prisoner's dilemma in Davis, D. (ed.), Genetic Algorithms and Simulated Annealing, Pitman, London.Google Scholar
  6. Boyd, R. and Lorberbaum, J. P. (1987), No pure strategy is evolutionarily stable in the Repeated Prisoner's Dilemma, Nature 327, 58–59.Google Scholar
  7. Boyd, R. (1989), Mistakes allow evolutionary stability in the repeated prisoner's dilemma game, J. Theoret. Biol. 136, 47–56.Google Scholar
  8. Donninger, C. (1986), Is it always efficient to be nice? in A., Dieckmann and P., Mitter (eds.) Paradoxical Effects of Social Behaviour: Essays in Honor of Anatol Rapoport, Physica, Heidelberg, pp. 123–134.Google Scholar
  9. Eshel, I. and Motro, A. (1981), Kin selection and strong evolutionary stability of mutual help, Theoret. Population Biol 19, 420–433.Google Scholar
  10. Feldman, M. and Thomas, E. (1987), Behavior-dependent contexts for repeated plays of the prisoner's dilemma II: Dynamical aspects of the evolution of cooperation, J. Theoret. Biol. 128, 297–315.Google Scholar
  11. Hofbauer, J. and Sigmund, K. (1988), Dynamical Systems and the Theory of Evolution, Cambridge University Press.Google Scholar
  12. Hofbauer, J. and Sigmund, K. (1990), Adaptive dynamics and evolutionary stability, to appear in Letters Appl. Math. Google Scholar
  13. May, R. M. (1987), More evolution of cooperation, Nature 327, 15–17.Google Scholar
  14. Maynard Smith, J. (1982), Evolution and the Theory of Games, Cambridge University Press.Google Scholar
  15. Milinski, M. (1987), Tit for Tat in sticklebacks and the evolution of cooperation, Nature 325, 434–435.Google Scholar
  16. Molander, P. (1985), The optimal level of generosity in a selfish, uncertain environment, J. Conflict Resolut. 29, 611–618.Google Scholar
  17. Müller, U. (1987), Optimal Retaliation for Optimal Cooperation, J. Conflict Resolution 31, 692–724.Google Scholar
  18. Nowak, M. and Sigmund, K. (1989a), Oscillations in the Evolution of Reciprocity, J. Theor. Biol., 137, 21–26.Google Scholar
  19. Nowak, M. and Sigmund, K. (1989b), Game dynamical aspects of the Prisoner's Dilemma, J. Appl. Math. Comp. 30, 191–213.Google Scholar
  20. Nowak, M. (1990), An evolutionarily stable strategy may be inaccessible, Theoret Population Biol. 142, 237–241.Google Scholar
  21. Selten, R. and Hammerstein, P. (1984), Gaps in Harley's argument on evolutionarily stable learning rules and in the logic of TFT, Behavioural and Brain Sci. 7, 115–116.Google Scholar
  22. Selten, R. (1975), Reexamination of the perfectness concept for equilibrium points in extensive games, Internat. J. Game Theory 4, 25–55.Google Scholar
  23. Smale, S. (1980), The prisoner's dilemma and dynamical systems associated to non-cooperative games, Econometrica 48, 1617–1634.Google Scholar
  24. Wilkinson, G. S. (1984), Reciprocal food sharing in the vampire bat, Nature 308, 181–184.Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Martin Nowak
    • 1
  • Karl Sigmund
    • 2
    • 3
  1. 1.Department of ZoologyUniversity of OxfordOxfordEngland
  2. 2.Institut für Mathematik der Universität WienViennaAustria
  3. 3.IIASALaxenburgAustria

Personalised recommendations