Skip to main content
Log in

Construction of invariant tori for the spin-orbit problem in the mercury-sun system

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The stability of spin-orbit resonances, namely commensurabilities between the periods of rotation and revolution of an oblate satellite orbiting around a primary body, is investigated using perturbation theory. We reduce the system to a model described by a one-dimensional, time-dependent Hamiltonian function. By means of KAM theory we rigorously construct bidimensional invariant surfaces, which separate the three dimensional phase space. In particular with a suitable choice of the rotation numbers of the invariant tori we are able to trap the periodic orbit associated with a given resonance in a finite region of the phase space. This technique is applied to the Mercury-Sun system. A connection with the probability of capture in a resonance is also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: 1963, ‘Proof of a Theorem by A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian’, Russ. Math. Surveys, 18, 9.

    Google Scholar 

  2. Berretti, A. and Chierchia, L.: 1990, ‘On the complex analytic structure of the golden invariant curve for the standard map’, Nonlinearity, 3, 39.

    Google Scholar 

  3. Berretti, A., Celletti, A., Chierchia, L. and Falcolini, C.: 1991, work in progress.

  4. Cayley, A.: 1859, ‘Tables of the developments of functions in the theory of elliptic motion’, Mem. Roy. Astron. Soc., 29, 191.

    Google Scholar 

  5. Celletti, A.: 1989, ‘Analysis of resonances in the spin-orbit problem in celestial mechanics’, Ph.D. Thesis, ETH Zürich.

  6. Celletti, A.: 1990, ‘Analysis of resonances in the spin-orbit problem in celestical mechanics: The synchronous resonance (Part I)’, J. Appl. Math. and Phys. (ZAMP), 41, 174.

    Google Scholar 

  7. Celletti, A.: 1990, ‘Analysis of resonances in the spin-orbit problem in celestial mechanics: Higher order resonances and some numerical experiments (Part II)’, J. Appl. Math. and Phys. (ZAMP), 41, 453.

    Google Scholar 

  8. Celletti, A. and Chierchia, L.: 1987, ‘Rigorous estimates for a computer-assisted KAM theory’, J. Math. Phys., 28, 2078.

    Google Scholar 

  9. Celletti, A. and Chierchia, L.: 1988, ‘Construction of analytic KAM surfaces and effective stability bounds’, Commun. Math. Phys., 118, 119.

    Google Scholar 

  10. Celletti, A. and Chierchia, L.: 1991, ‘A computer-assisted approach to small-divisors problems arising in Hamiltonian mechanics’, to appear in Meyer, K. and Schmidt, D. (Eds.), Computer Aided Proofs in Analysis, I.M.A. conference proceedings series, Springer-Verlag.

  11. Celletti, A., Falcolini, C. and Porzio, A.: 1987, ‘Rigorous numerical stability estimates for the existence of KAM tori in a forced pendulum’, Ann. Inst. Henri Poincaré, 47, 85.

    Google Scholar 

  12. Danby, J.M.A.: 1962, Fundamentals of Celestial Mechanics, Macmillan, New York.

    Google Scholar 

  13. Llave, R. de la and Rana, D.: 1991, ‘Accurate strategies for KAM bounds and their implementation’, to appear in Meyer, K. and Schmidt, D. (Eds.), Computer Aided Proofs in Analysis, I.M.A. conference proceedings series, Springer-Verlag.

  14. Denzler, J.: 1987, ‘Mather sets for plane Hamiltonian systems’, J. of Applied Math. and Phys. (ZAMP), 38, 791.

    Google Scholar 

  15. Eckmann, J.-P. and Wittwer, P.: 1985, ‘Computer methods and Borel summability applied to Feigenbaum's equation', Springer Lecture Notes in Physics, 227.

  16. Goldreich, P. and Peale, S.: 1966, ‘Spin-orbit coupling in the solar system’, Astron. J., 71, 425.

    Google Scholar 

  17. Goldreich, P. and Peale, S.: 1970, ‘The dynamics of planetary rotations’, Ann. Rev. Astron. Astrophys., 6, 287.

    Google Scholar 

  18. Greene, J.M.: 1979, ‘A method for determining a stochastic transition’, J. Math. Phys., 20, 1183.

    Google Scholar 

  19. Henrard, J.: 1985, ‘Spin-orbit resonance and the adiabatic invariant’, in Ferraz-Mello, S. and Sessin, W. (Eds.), Resonances in the Motion of Planets, Satellites and Asteroids, São Paulo, p. 19.

  20. Henrard, J. and Sato, M.: 1990, ‘The origin of chaotic behaviour in the Miranda-Umbriel 3: 1 resonance’, Cel. Mech. and Dynam. Astron., 47, 391.

    Google Scholar 

  21. Kolmogorov, A.N.: 1954, ‘On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian’, Dokl. Akad. Nauk. SSR, 98, 469.

    Google Scholar 

  22. Lanford III, O.E.: 1984, ‘Computer assisted proofs in analysis’, Physics A, 124, 465.

    Google Scholar 

  23. Mather, J.N.: 1984, ‘Nonexistence of invariant circles’, Erg. Theory and Dynam. Systems, 4, 301.

    Google Scholar 

  24. Moser, J.: 1962, ‘On invariant curves of area-preserving mappings of an annulus’, Nach. Akad. Wiss. Göttingen, Math. Phys. K1.II, 1, 1.

    Google Scholar 

  25. Neishtadt, A.I.: 1990, ‘Averaging, capture into resonances, and chaos in nonlinear systems’, in Campbell, D. (Ed.), Chaos, AIP, New York, p. 261.

    Google Scholar 

  26. Peale, S.J.: 1977, ‘Rotation histories of the natural satellites’, in Burns, J.A. (Ed.), Planetary Satellites, University of Arizona Press, p. 87.

  27. Tittermore, W.C. and Wisdom, J.: 1988, ‘Tidal evolution of the Uranian satellites’, Icarus, 74, 172.

    Google Scholar 

  28. Wisdom, J.: 1987, ‘Chaotic behaviour in the solar system’, Proc. R. Soc. Lond., A413, 109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Celletti, A., Falcolini, C. Construction of invariant tori for the spin-orbit problem in the mercury-sun system. Celestial Mech Dyn Astr 53, 113–127 (1992). https://doi.org/10.1007/BF00049460

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049460

Key words

Navigation