Skip to main content
Log in

Computer simulations in the general three-body problem. The theoretical bases of the studies

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

In this article we present a theoretical method for the study of the general three-body problem by computer simulation developed in the Leningrad State University Astronomical Observatory (LSU AO). This method permits statistical methods to be used for studying the behaviour of triple systems. This is achieved by selecting a representative sample of initial conditions which then reveal general features of the evolution.

The main results of numerical experiments on the three-body problem carried out at the LSU AO during the past 25 years have been summarized in the reviews by Anosova (1985), Anosova and Orlov (1985), and Anosova (1986).

Systematic studies of about 3 × 104 triple systems with negative total energy (E < 0) have yielded the following main results. Most (93.4%) of the systems decay; the decay always occurs after a close triple approach of the components. In a system with unequal masses, the escaping body usually has the smallest mass. A small fraction (4.3%) of stable systems is formed if the angular momentum is non-zero. The qualitative evolution in three-dimensional cases is the same as for planar systems. Small changes in initial conditions sometimes lead to substantial differences in the final outcome. The decay of triple systems is a stochastic process similar to radioactive decay. The estimated mean lifetime is equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (107.1 ± 1.8) crossing times τ for equal-mass components. Thus, for solar mass components and a typical dimension d = 0.01 pc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.6 ± 1.5) × 106 y, and for triple galaxies with M = 101° M 0 and d = 50 kpc, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (1.8 ± 1.7) × 1011 y. The value % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] decreases with increasing mass dispersion.

In this article we also carry out a theoretical analysis of the changes of the integrals of motion in the general three-body problem used as the controls on the calculations. The following basic results have been found: (1) analytical functions of the changes of the integrals of motion during the integration time have been obtained; (2) changes in the integrals of the mass-centre of a triple system do not correlate with the cumulative integration errors; (3) the cumulative changes of the integral of energy are proportional to the sum of squares of the cumulative errors in the coordinates and the velocities of the bodies; (4) the cumulative changes of the square of the total angular momentum are proportional to the product of the square of these cumulative errors.

The analysis of the accuracy of computer simulations conducted in LSU AO for the 3 × 104 triple systems with E < 0 is summarized by the following basic qualitative results: (1) the unstable triple systems decay after a mean lifetime % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] ≌ 100τ or % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] ≌ 104 % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \]t where τ is a crossing time, and % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGObaaaaaa!3C6A!\[\overline h \]τ, is a mean integration step After this integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] of the integrals of the energy of the triple systems are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamyraaaaaaa!3D10!\[\overline {DE} \] = (0.9±0.1) × 10−4, and the mean cumulative relative changes % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] of the area integrals are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamitaaaaaaa!3D17!\[\overline {DL} \] = (1.0±0.1) × 10−6; the mean values of the cumulative errors % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gaamiraiaadkhaaaa!3D2C!\[{Dr}\], % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOvaaaaaaa!3D21!\[\overline {Dv} \] in defining the coordinates (r) and velocities (v) of the bodies (during the total integration time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \]) are equal to % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamOCaaaaaaa!3D3D!\[\overline {Dr} \] = 0.5 × 10−3 d, % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGebGaamODaaaaaaa!3D41!\[\overline {Dv} \] = 0.5 × 10−2 v, where d is the unit of distance, and v is the unit of velocity; the mean local integration errors (of one integration step) are equal to σr= 5 × 10−8 d, 6v = 5 × 10−7 v; (2) the process of accumulation of integration errors has a complicated character and correlates strongly with the process of dynamical evolution of the triple systems; (a) because of the strong gravitational interplays of the bodies, the process of the accumulation of the integration errors is very intensive; however, the triple systems with these interplays of the bodies have, as a rule, a small escape time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] ≌ tτ, and the cumulative calculation errors are small too; (b) in the stable triple systems the local integration errors are practically constant during the numerical study of their evolution, and the calculations can be carried out (if it is necessary) during the time % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Waa0aaaeaacaWGubaaaaaa!3C56!\[\overline T \] = (2–3) × 103τ without disturbing the periodical motions of the bodies; (3) thus, in the general three-body problem with different initial conditions, it is not necessary to carry out the computer simulations over long times, as most of the triple systems decay and do not have very long lifetimes; (4) the mean level of the cumulative errors Dr and Dv of the definitions of the coordinates and velocities of bodies in the different triple systems is practically equal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarseth, S. J.: 1985, Multiple Time Scales, Acad. Press. p. 378.

  • Agekian, T. A. and Anosova, J. P.: 1967, Astron. Zh. 44, 1261.

    Google Scholar 

  • Agekian, T. A. and Anosova, J. P.: 1968, Astrofizika, 4, 31.

    Google Scholar 

  • Agekian, T. A., Anosova, J. P. and Orlov, V. V.: 1983, Astrofizika, 19, 661.

    Google Scholar 

  • Agekian, T. A. and Martynova, A. L.: 1973, Messenger Leningrad Univ., 1, 122.

    Google Scholar 

  • Anosova, J. P.: 1969, Trans. Publ. Astr. Obs. Leningrad Univ., 25, 100.

    Google Scholar 

  • Anosova, J. P.: 1985, Totals of Sci. and Techn., Ser. Astron., 26, 57.

    Google Scholar 

  • Anosova, J. P.: 1986, Astrophys. Space Sci., 124, 217.

    Google Scholar 

  • Anosova, J. P. and Orlov, V. V.: 1983, Publ. Astr. Obs. Leningrad Univ., 38, 142.

    Google Scholar 

  • Anosova, J. P. and Orlov, V. V.: 1984, Publ. Astr. Obs. Leningrad Univ., 39, 101.

    Google Scholar 

  • Anosova, J. P. and Orlov, V. V.: 1985, Publ. Astr. Obs. Leningrad Univ., 40, 66.

    Google Scholar 

  • Anosova, J. P. and Orlov, V. V.: 1986, Astr. Zh., 30, 380.

    Google Scholar 

  • Anosova, J. P., Bertov, D. I. and Orlov, V. V.: 1984, Astrofizika, 20, 177.

    Google Scholar 

  • Babadshayanz, L. K.: 1981, Pis'ma in Astron. Zh., 7, 752.

    Google Scholar 

  • Becker, L.: 1920, Month. Not. Roy. Astron. Soc., 80, 6, 590.

    Google Scholar 

  • Bettis, D. and Szebehely, V.: 1971, Astrophys. Space Sci., 14 (1), 133.

    Google Scholar 

  • Burrau, C.: 1913, Astron. Nachr., 195, 113.

    Google Scholar 

  • Golubev, V. G.: 1967, Lect. Acad. Sci., USSR, 174, 767.

    Google Scholar 

  • Golubev, V. G. and Grebenikov, E. A.: 1985, The Three-Body Problem in Celestial Mechanics, Moscow Univ. Press., p. 240.

  • Harrington, R. S.: 1972, Celest. Mech., 6(3), 322.

    Google Scholar 

  • Herric, C.: 1972, Astrodynamics, Vol. 2, London-New York, p. 360.

  • Hohl, J. and Watt, J: 1976, Modern Numerical Methods for the Solution of Ordinary Differential Equations, Oxford, p. 312.

  • Huang, T. S. and Innanen, K. A.: 1983, Astron. Journ., 88(6), 870.

    Google Scholar 

  • Marchal, C.: 1989, The Three-Body Problem, Elsevier Sci. Publ. Netherlands, Amsterdam, p. 576.

    Google Scholar 

  • Miachin, V. F.: 1959, Bull. Inst. Theor. Astron., USSR, 7(4), 259.

    Google Scholar 

  • Orlov, A. A. and Solovaya, N. A.: 1980, Publ. Sternberg Inst. Astr., 49, 69.

    Google Scholar 

  • Pascal, M.: 1981. Celest. Mech., 24(3), 289.

    Google Scholar 

  • Roy, A.: 1978, Orbit Motion, Bristol, p. 545.

  • Schmidt, O. Yu.: 1947, Lect. Acad. Sci., USSR, 48(2), 213.

    Google Scholar 

  • Smith, H.: 1977, Astron. Astrophys., 61, 305.

    Google Scholar 

  • Szebehely, V.: 1967, Proc. Nat. Acad. Sci., 38(1), 60.

    Google Scholar 

  • Szebehely, V.: 1971, Celest. Mech., 4(1), 116.

    Google Scholar 

  • Szebehely, V.: 1978, in Instability in the Dynamical Systems, Kluwer, Dordrecht, p. 168.

    Google Scholar 

  • Szebehely, V.: 1989, Adventures in Celestial Mechanics, Univ. Texas Press, Austin, p. 175.

    Google Scholar 

  • Szebehely, V. and Bettis, D.: 1972, in Gravitational N-Body Problem, Kluwer, Dordrecht, 136, 388.

  • Szebehely, V. and Zare, K.: 1977, Astron. Astrophys., 58(1−2), 145.

    Google Scholar 

  • Worral, G.: 1967, Month. Not. Roy. Astron. Soc., 135, 83.

    Google Scholar 

  • Zadunaisky, P.: 1979, Celest. Mech., 20(3), 203.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anosova, J.P. Computer simulations in the general three-body problem. The theoretical bases of the studies. Celestial Mech Dyn Astr 48, 357–373 (1990). https://doi.org/10.1007/BF00049390

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00049390

Keywords

Navigation