Skip to main content
Log in

Food limitation and body size in the life cycles of planktonic rotifers and cladocerans

  • Food
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review considers what is known about the effects of food limitation upon the life cycle characteristics of rotifers and planktonic cladocerans. The characteristics considered in rotifers are the size of eggs, juveniles and adults and the durations of the juvenile phase and period of egg production. In cladocerans, the life history features dealt with are their length-weight relationships, the body size, instar stage, age and fecundity of the primiparous female and their fecundity-adult size relationship. The influence of limiting food conditions is demonstrated for these characteristics by comparison with the situation in non-limiting circumstances; the comparison is confined to experiments where food concentrations are quantified. A direct comparison is made between rotifers and cladocerans in conditions of defined food resource availability in terms of their length-weight relationships, the daily allocation of adults or near-adults to growth and reproduction and their threshold food concentrations. These comparisons are discussed in relation to the following topics: the high cost of cumulated respiration resulting from prolongation of the juvenile phase of body growth; the fundamentally different nature of growth in the two taxonomic groups; the body size of species and the size that must be attained for reproduction; the ecological implications of the very different threshold food concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-Ilkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norw. J. Zool. 24: 419–456.

    Google Scholar 

  • Bohrer, R. N. & W. Lampert, 1988. Simultaneous measurement of the effect of food concentration on assimilation and respiration in Daphnia magna. Functional Ecology. 2: 463–471.

    Google Scholar 

  • Calow, P., 1978. Life cycles. Chapman & Hall. 164 pp.

  • Doohan, M. & V. Rainbow, 1971. Determination of dry weights of small Aschelminthes (< 0.1 µg). Oecologia (Berl.). 6: 380–383.

    Google Scholar 

  • Doohan, M., 1973. An energy budget for adult Brachionus plicatilis Muller (Rotatoria). Oecologia (Berl.). 13: 351–362.

    Google Scholar 

  • Duncan, A., 1983. The influence of temperature upon the duration of embryonic development of tropical Brachionus species (Rotifera). IN: Schiemer, F. (ed.), Limnology of Parakrama Samudra — Sri Lanka. Junk. 107–115.

  • Duncan, A., 1984. Assessment of factors influencing the composition, body size and turnover rate of zooplankton in Parakrama Samudra, an irrigation reservoir in Sri Lanka. Hydrobiologia. 113: 201–215.

    Google Scholar 

  • Duncan, A., 1985. Body carbon in daphnids as an indicator of the food concentration available in the field. Arch. Hydrobiol. Beih. Ergbn. Limnol. 21: 81–90.

    Google Scholar 

  • Duncan, A., 1985b. Carbon weight on length regressions of Daphnia spp. grown at threshold food concentrations. Verh. Int. Ver. Limnol. 22: 3109–15.

    Google Scholar 

  • Fenchel, T., 1980. Suspension feeding in ciliate Protozoa: feeding rates and their ecological significance. Microb. Ecol. 6: 13–25.

    Google Scholar 

  • Gilbert, J. J., 1985. Competition between rotifers and Daphnia. Ecology 66(6): 1943–1950.

    Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1984. Spine development in the rotifer Keratella cochlearis: induction by cyclopoid copepods and Asplanchna. Freshwat. Biol. 14: 639–647.

    Google Scholar 

  • Hardy, E. R., 1989. Effect of temperature, food concentration and turbidity on the life cycle characteristics of planktonic cladocerans in a tropical lake, Central Amazon: a field and experimental study. PhD Thesis. University of London (RHBNC). 337 pp.

  • Hrabackova, M., 1971. The size of primipara and neonates of Daphnia hyalina Leydig (Crustacea: Cladocera) under natural and enriched food conditions. Vest. Ces. Spol. Zool. 38(2): 98–105.

    Google Scholar 

  • Hrabackova, M. & J. Hrbacek, 1979. Rates of postembryonic development in several populations of the group of species Daphnia hyalina Leydig at various concentrations of food. Vest. Ces. Spol. Zool. 43(4): 253–259.

    Google Scholar 

  • Herzig, A., 1983a. The ecological significance of the relationship between temperature and duration of embryonic development in planktonic freshwater copepods. Hydrobiologia. 100: 65–91.

    Google Scholar 

  • Herzig, A., 1983b. The ecological significance of the relationship between temperature and duration of embryonic development of rotifers. Hydrobiologia. 104: 237–46.

    Google Scholar 

  • Ivanova, M. B. & S. V. Vasilenko, 1987. Relationship between number of eggs, brood weight and female body weight in Crustacea. Int. Revue ges. Hydrobiol. 72(2): 147–169.

    Google Scholar 

  • Jayatunga, Y. N. A., 1986. The influence of food and temperature on the life cycle characteristics of tropical cladoceran species from Kalawewa Reservoir, Sri Lanka. PhD Thesis. University of London (RHBNC) 410 pp.

  • King, C. E., 1967. Food, age and the dynamics of a laboratory population of rotifers. Ecology. 48(1): 111–128.

    Google Scholar 

  • King, C. E., 1969. Genetics of reproduction, variation and adaptation in rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 8: 187–201.

    Google Scholar 

  • Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. IV. Arch. Hydrobiol. Suppl. 48: 361–8.

    Google Scholar 

  • Leimeroth, N., 1980. Respiration of different stages and energy budget of juvenile Brachionus calycifforus. Hydrobiologia. 73: 195–197.

    Google Scholar 

  • Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia. 147: 245–255.

    Google Scholar 

  • Lynch, M., 1980. Predation, enrichment and the evolution of cladoceran life histories: a theoretical approach. IN: W. C. Kerfoot (ed.). Evolution and ecology of zooplankton communities. 367–376. Univ. Press, New Hampshire.

    Google Scholar 

  • Lynch, M., 1985. Elements of a mechanistic theory for the life history consequences of food limitation. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 351–362.

    Google Scholar 

  • Pejler, B., 1980. Variation in the genus Keratella. Hydrobiologia. 73: 207–213.

    Google Scholar 

  • Pilarska, J., 1977. Eco-physiological studies on Brachionus rubens Ehrbg. (Rotatoria). Pol. Arch. Hydrobiol. 24: 319–354.

    Google Scholar 

  • Pourriott, R., 1973. Rapports entre la temperature, la taille des adultes, la longuer des œufs et le taux de developpement embryonnaire chez Brachionus calyciflorus. Pallas (Rotifere). Ann. Hydrobiol. 4: 103–115.

    Google Scholar 

  • Richards, F. J., 1959. A flexible growth function for empiracle use. J. exp. Botany. 10: 290–300.

    Google Scholar 

  • Robertson, J. R. & Salt, G. W., 1981. Responses in growth, mortality and reproduction to variable food levels by the rotifer Asplanchna girodi. Ecology. 62(6): 1585–1596.

    Google Scholar 

  • Rocha, O., 1983. The influence of food-temperature combinations on the duration of development, body size, growth and fecundity of Daphnia species. PhD Thesis, Royal Holloway College, University of London. 337 pp.

  • Rocha, O. & Duncan, A., 1985. The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J. Plankton. Res. 7(2): 279–294.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton Rotifers. Biology and Taxonomy. Die Binnengewasser. 26: 1–146.

    Google Scholar 

  • Salonen, K., 1979. A versatile method for the rapid and accurate determination of carbon by high temperature combustion. Limnol. Oceanogr. 24: 177–183.

    Google Scholar 

  • Santos, L. C. dos., 1989. The effects of food limitation on the population dynamics, production and biological interactions of three Daphnia species, co-existing in a London reservoir. PhD Thesis. University of London (RHBNC). 236 pp.

  • Schiemer, F., 1985. Bioenergetic niche differentiation of aquatic invertebrates. Verh. Int. Ver. Limnol. 22: 3014–3018.

    Google Scholar 

  • Schiemer, F., A. Duncan & R. Z. Klekowski, 1980. A bioenergetic study of a benthic nematode, Plectus palustris de Man 1880, throughout its life cycle. Oecologia (Berl.). 44: 205–212.

    Google Scholar 

  • Schnute, J., 1981. A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38: 1128–1140.

    Google Scholar 

  • Serra, M. & M. R. Miracle, 1987. Biometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147: 83–89.

    Google Scholar 

  • Sibly, R. M. & P. Calow, 1986. Physiological Ecology of Animals. Balckwell Sci. Publ. 179 pp.

  • Snell, T. W., 1977. Clonal selection, competition among clones. Arch. Hydrobiol. Beih. Ergbn. Limnol. 8: 202–204.

    Google Scholar 

  • Snell, T. W. & E. M. Boyer, 1988. Thresholds for mictic female production in the rotifer Brachionus plicatilis (Muller). J. exp. Mar. Biol. Ecol. 124: 73–85.

    Google Scholar 

  • Snell, T. W. & K. Carrillo, 1984. Body size variations among strains of the rotifer Brachionus plicatilis. Aquaculture. 37: 359–367.

    Google Scholar 

  • Snell, T. W. & C. E. King, 1977. Lifespan and fecundity patterns in rotifers: the cost of reproduction. Evolution. 31(4): 882–890.

    Google Scholar 

  • Starkweather, P. L., 1987. Rotifera. chap. 5. IN: Pandian & Vernberg (eds.) Animal Energetics. 1: 159–183.

  • Stemberger, R. S. & J. J. Gilbert, 1985a. Body size, food concentration and population growth in planktonic rotifers. Ecology. 66(4): 1151–1159.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985b. Assessment of threshold food levels and population growth in planktonic rotifers. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 269–275.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Rotifer threshold food concentrations and the size efficiency hypothesis. Ecology. 68(1): 181–187.

    Google Scholar 

  • Taylor, W. D., 1978. Growth response of ciliate Protozoa to the abundance of their bacterial prey. Microb. Ecol. 4: 207–214.

    Google Scholar 

  • Walz, N., 1983. Continuous culture of the pelagic rotifers, Keratella cochlearis and Brachionus angularis. Arch. Hydrobiol. 98(1): 70–92.

    Google Scholar 

  • Weglenska, T., 1971. The influence of various food concentrations of natural food on the development, fecundity and production of planktonic crustacean filtrators. Ekol. Pol. 19(30): 427–473.

    Google Scholar 

  • Yufera, M., 1987. Effect of algal diet and temperature on the embryonic development time of the rotifer Brachionus plicatilis. Hydrobiologia. 147: 319–322.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, A. Food limitation and body size in the life cycles of planktonic rotifers and cladocerans. Hydrobiologia 186, 11–28 (1989). https://doi.org/10.1007/BF00048891

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048891

Key words

Navigation