, Volume 238, Issue 1, pp 89–97 | Cite as

Flow cytometry: instrumentation and application in phytoplankton research

  • Hans W. Balfoort
  • Thomas Berman
  • Serge Y. Maestrini
  • Andrea Wenzel
  • Tamar Zohary
Part Two: Daily Patterns of Growth in Culture and Lake Experimental Work


In flow cytometry, light scattering and fluorescence of individual particles in suspension is measured at high speed. When applied to planktonic particles, the light scattering and (auto-)fluorescence properties of algal cells can be used for cell identification and counting. Analysis of the wide size spectrum of phytoplankton species, generally present in eutrophic inland and coastal waters, requires flow cytometers specially designed for this purpose. This paper compares the performance in phytoplankton research of a commercial flow cytometer to a purpose built instrument. It reports on the identification of phytoplankton and indicates an area where flow cytometry may supersede more conventional techniques: the analysis of morphological and physiological characteristics of subpopulations in phytoplankton samples.


Phytoplankton Flow Cytometry Light Scattering Coastal Water Flow Cytometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balfoort H. W., J. Snoek, J. R. M. Smits, L. W. Breedveld, J. W. Hofstraat & J. Ringelberg, Automatic identification of algae: neural network analysis of flow cytometric data. J. of Plankton Res. 14 no. 4 (in press).Google Scholar
  2. Cunningham, A., 1990. A low-cost, portable flow cytometer specifically designed for phytoplankton analysis. J. Plankton Res. 12: 149–160.Google Scholar
  3. Dubelaar, G. B. J., A. C. Groenewegeen, W. Stokdijk, G. J. Van den Engh & W. M. Visser, 1989. Optical plankton analyser: A flow cytometer for plankton analysis, II: Specifications. Cytometry 10: 529–539.Google Scholar
  4. Frankel, D. S., R. J. Olson, S. L. Frankel & S. W. Chisholm, 1989. Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations. Cytometry 10: 540–550.Google Scholar
  5. Golueke, C. G. & W. J. Oswald, 1965. J. Wat. Pollut. Cont. Fed. 37: 471.Google Scholar
  6. Groenewegen, A. C., G. B. J. Dubelaar & J. W. M. Visser, 1991. Improved particle length measurements in the optical plankton analyser. Cytometry supplement 5. Abstracts to the 15th congress of the Soc. for Anal. Cytology. Bergen, Norway.Google Scholar
  7. Kroon, B. M. A., M. Lataasa, B. Ibelings & L. R. Mur, 1992. The effect of dynamic light regimes on Chlorella. Hydrobiologia 238: 71–78.Google Scholar
  8. Legendre, L. & C. M. Yentsch, 1989. Overview of flow cytometry and image analysis in biological oceanography and limnology. Cytometry 10: 501–510.Google Scholar
  9. Olson, R. J., S. L. Frankel & S. W. Chisholm, 1983. An inexpensive flow cytometer for the analysis of fluorescence signals in phytoplankton: chlorophyll and DNA distributions. J. exp. mar. Biol. Ecol. 68: 129–144.Google Scholar
  10. Peeters, J. C. H., G. B. J. Dubelaar, J. Ringelberg & J. W. M. Visser, 1989. Optical plankton analyser: A flow cytometer for plankton analysis, I: Design considerations. Cytometry 10: 522–528.Google Scholar
  11. Phinney, D. A. & T. L. Cucci, 1989. Flow cytometry and phytoplankton. Cytometry 10: 511–521.Google Scholar
  12. Schuessler, R. G., 1967. An investigation of the chemical flocculation and autoflocculation of algae. M.Sc. Thesis, University of Notre Dame, South Bend IN.Google Scholar
  13. Sosik, H. M., S. W. Chisholm & R. J. Olson, 1989. Chlorophyll fluorescence from single cells: Interpretation of flow cytometric signals. Limnol. Oceanogr. 34: 1749–1761.Google Scholar
  14. Steen, H. B. & T. Lindmo, 1988. Applicatios of a new flow cytometer. International Clinical Products Review, March/April, 1988.Google Scholar
  15. Sukenik, A. & G. Shelef, 1984. Biotechnol. Bioeng. 26 (142).Google Scholar
  16. Trask, B. J., G. J. Van den Engh & J. H. B. W. Elgershuizen, 1982. Analysis of phytoplankton by flow cytometry. Cytometry 2 No. 4: 258–264.Google Scholar
  17. Yentsch, C. M., P. K. Horan, K. Muirhead, Q. Dortch, E. Haugen, L. Legendre, L. S. Murphy, M. J. Perry, D. A. Phinney, S. A. Pomponi, R. W. Spinrad, M. Wood, C. S. Yentsch & B. J. Zahuranec, 1983. Flow cytometry and cell sorting: A technique for analysis and sorting of aquatic particles. Limnol. Oceanogr. 28: 1275–1280.Google Scholar

Copyright information

© Kluwer Academic Publishers 1992

Authors and Affiliations

  • Hans W. Balfoort
    • 1
  • Thomas Berman
    • 2
  • Serge Y. Maestrini
    • 3
  • Andrea Wenzel
    • 4
  • Tamar Zohary
    • 2
  1. 1.Aquatic Ecology DepartmentUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Kinneret Limnological LaboratoryTiberiasIsrael
  3. 3.Centre de Recherche en Ecologie Marine et Aquaculture de L'Houmeau (CNRS-IFREMER)L'HoumeauFrance
  4. 4.Fraunhofer Institute for Environmental Chemistry and EcotoxicologySchmallenbergGermany

Personalised recommendations