Skip to main content

4. The microflora

Adaptations to life in extremely saline lakes

This is a preview of subscription content, access via your institution.

References

  • Aasen, A. J., Eimhjellen, K. E. & Liaaen-Jensen, S., 1969. An extreme source of β-carotene. Acta chem. scand. 23: 2544–2545.

    Google Scholar 

  • Baas-Becking, L. G. M., 1928. On organisms living in concentrated brine. Tijdschr. ned. dierk. Vereen. 3, Ser. 1: 6–9.

    Google Scholar 

  • Baas-Becking, L. G. M. & Kaplan, I. R., 1956. The microbiological origin of the sulphur nodules of Lake Eyre. Trans. R. Soc. S. Aust. 79: 52–65.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M., 1972. Photosynthetic activities of the halophilic alga, Dunaliella parva. Pl. Physiol. Lancaster, 49: 240–243.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M., 1973a. The role of glycerol in the osmotic regulation of the halophilic alga, Dunaliella. Pl. Physiol. Lancaster, 51: 875–878.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M., 1973b. NADP specific dihydroxyacetone reductase from Dunaliella parva. FEBS Letters, 29: 153–155.

    Google Scholar 

  • Borowitzka, L. J., 1981. Solute accumulation and regulation of cell water activity. In: L. G. Paleg and D. Aspinall (eds.). Physiology and Biochemistry of Drought Resistance in Plants. Academic Press.

  • Borowitzka, L. J. & Brown, A. D., 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Microbiol. 96: 37–52.

    Google Scholar 

  • Borowitzka, L. J., Demmerle, D., Mackay, M. A. & Norton, R. S., 1980. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science 210: 650–651.

    Google Scholar 

  • Borowitzka, L. J., Kessley, D. S. & Brown, A. D., 1977. The salt relations of Dunaliella. Further observations on glycerol production and its regulation. Arch. Microbiol. 113: 131–138.

    Google Scholar 

  • Brock, T. D., 1975. Salinity and the ecology of Dunaliella from the Great Salt Lake. J. gen. Microbiol. 89: 285–292.

    Google Scholar 

  • Brock, T. D., 1976. Halophilic blue-green algae. Arch. Microbiol. 107: 109–111.

    Google Scholar 

  • Brock, T. D., 1979. Ecology of saline lakes. In: M. Shilo (ed.) Strategies of Microbial Life in Extreme Environments. Dahlem Konferenzen, Berlin.

    Google Scholar 

  • Brown, A. D., 1964. Aspects of bacterial response to the ionic environment. Bact. Rev. 28: 296–329.

    Google Scholar 

  • Brown, A. D., 1976. Microbial water stress. Bact. Rev. 40: 803–846.

    Google Scholar 

  • Brown, A. D. & Borowitzka, L. J., 1979. Halotolerance of Dunaliella. In: M. Levandowsky & S. H. Hutner (eds.) Physiology and Biochemistry of Protozoa. Vol. 1. Academic Press, New York.

  • Brown, A. D. & Cho, K. Y., 1970. The walls of extremely halophilic cocci. Gram-positive bacteria lacking muramic acid. J. gen. Microbiol. 62: 267–270.

    Google Scholar 

  • Brown, R. M., Johnson, C. & Bold, H. C., 1968. Electron and phase contrast microscopy of sexual reproduction in Chlamydomonas moewusii. J. Phycol. 4: 100–120.

    Google Scholar 

  • Butcher, R. W., 1959. An introductory account of the smaller algae of British Coastal Waters. Part 1. Fisheries Investigations, Series IV. Her Majesty's Stationary Office, London.

    Google Scholar 

  • Castenholz, R. W., 1969. Thermophilic blue-green algae and the thermal environment. Bact. Rev. 33: 476–504.

    Google Scholar 

  • Christian, J. H. B. & Waltho, J. A., 1962. Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim. biophys. Acta 65: 506–508.

    Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Google Scholar 

  • Danon, A. & Stoeckenius, W., 1974. Photophosphorylation in Halobacterium halobium. Proc. natn. Acad. Sci. U.S.A. 71: 1234–1238.

    Google Scholar 

  • Drouet, F. & Daily, W. A., 1956. Revision of the coccoid myxophyceae. Butler University Botanical Studies, 12: 1–222.

    Google Scholar 

  • Gibbons, N. E., 1974. Halobacteriaceae. In: R. E. Buchanan and N. E. Gibbons (eds.) Bergey's Manual of Determinative Bacteriology. Eighth Edition. Williams and Wilkins, Baltimore.

    Google Scholar 

  • Ginzburg, M., 1969. The unusual membrane permeability of two halophilic unicellular organisms. Biochim. biophys. Acta 173: 370–376.

    Google Scholar 

  • Ginzburg, M., Sachs, L. & Ginzburg, B. Z., 1970. Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations. J. gen. Physiol. 55: 187–207.

    Google Scholar 

  • Ginzburg, M., Sachs, L. & Ginzburg, B. Z., 1971. Ion metabolism in a Halobacterium. II. Ion concentrations in cells at different levels of metabolism. J. Membrane Biol. 5: 78–101.

    Google Scholar 

  • Hamburger, C., 1905. Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch. Protistenk. 6: 111–130.

    Google Scholar 

  • Heimer, Y. M., 1973. The effects of NaCl, KCl and glycerol on the activity of nitrate reductase of a salt-tolerant and two non-tolerant plants. Planta, 113: 279–281.

    Google Scholar 

  • Hescox, M. A. & Carlberg, D. M., 1972. Photoreactivation in Halobacterium cutirubrum. Can. J. Microbiol. 18: 981–985.

    Google Scholar 

  • Hof, T. & Fremy, P., 1933. On myxophyceae living in strong brines. Recl. Trav. Bot. Neerl. 30: 140–162.

    Google Scholar 

  • Imhoff, J. F., Hashwa, F. & Trüper, H. G., 1978. Isolation of extremely halophilic phototrophic bacteria from the alkaline Wadi Natrun, Egypt. Arch. Hydrobiol. 84: 381–388.

    Google Scholar 

  • Imhoff, J. F. & Trüper, H. G., 1977. Ectothiorhodospira halochloris sp. nov., a new extremely halophilic phototrophic bacterium containing bacteriochlorophyll b. Arch. Microbiol. 114: 115–121.

    Google Scholar 

  • Johnson, M. K., Johnson, E. J., MacElroy, R. D., Speer, H. L. & Bruff, B. S., 1968. Effects of salts on the halophilic alga Dunaliella viridis. J. Bact. 95: 1461–1468.

    Google Scholar 

  • Jørgensen, B. B. & Cohen, Y., 1977. Solar Lake (Sinai). 5. The sulphur cycle of the benthic cyanobacterial mats. Limnol. Oceanogr. 22: 657–660.

    Google Scholar 

  • Kao, O. H. W., Berns, D. S. & Town, W. R., 1973. The characterisation of c-phycocyanin from an extremely halotolerant blue-green alga, Coccochloris elabens. Biochem. J. 131: 39–50.

    Google Scholar 

  • Kaplan, I. R. & Friedmann, A., 1970. Biological productivity in the Dead Sea. 1. Microorganisms in the water column. Isr. J. Chem. 8: 513–528.

    Google Scholar 

  • Kates, M., 1972. Ether-linked lipids. In: F. Snyder (ed.) Ether lipids. Chemistry and Biology. Academic Press, New York.

    Google Scholar 

  • Kelly, M., Norgard, S. & Liaaen-Jensen, S., 1970. Bacterial carotenoids XXXI. C50; carotenoids 5. Carotenoids of H. salinarium, especially bacterioruberin. Acta chem. scand. 24: 2169–2182.

    Google Scholar 

  • Krishna Pillai, V., 1955. Observations on the ionic composition of blue-green algae growing in saline lagoons. Proc. natn. Inst. Sci. India, 21B: 90–102.

    Google Scholar 

  • Lanyi, Y. K., 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bact. Rev. 38: 272–290.

    Google Scholar 

  • Larsen, H., 1963. Halophilism. In: I. C. Gunsalus and R. Y. Stanier (eds.) The Bacteria. Vol. 4. Academic Press, New York.

  • Lerche, W., 1937. Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch. Protistenk. 88: 236–268.

    Google Scholar 

  • Loeblich, L. A., 1972. Studies on the brine flagellate, Dunaliella salina. Dissertation, University of California at San Diego.

  • Marquez, E. D. & Brodie, A. F., 1973. The effect of cations on the heat stability of a halophilic nitrate reductase. Biochim. biophys. Acta, 321: 84–89.

    Google Scholar 

  • Marrè, E. & Servettaz, O., 1959. Sul meccanismo di adattamento a condizioni osmotiche estreme in Dunaliella salina. II. Rapporto fra concentrazioni del mezzo esterno e composizione del succo cellulare. Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Ser. 8, 26: 272–278.

    Google Scholar 

  • Marshall, C. L., Wicken, A. J. & Brown, A. D., 1969. The outer layer of the cell envelope of Halobacterium halobium. Can. J. Biochem. 47: 71–74.

    Google Scholar 

  • Miller, D. M., Jones, J. H.,Yopp, J. H., Tindall, D. R. & Schmid, W. D., 1976. Ion metabolism in a halophilic bluegreen alga, A phanothece halophytica. Arch. Microbiol. 111: 145–149.

    Google Scholar 

  • Mullakhanbhai, M. F. & Larsen, H., 1975. Halobacterium volcanii spec. nov., a Dead Sea Halobacterium with a moderate salt requirement. Arch. Mikrobiol. 104: 207–214.

    Google Scholar 

  • Pollard, A. & Wyn Jones, R. G., 1979. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298.

    Google Scholar 

  • Post, F. J., 1977. The microbial ecology of the Great Salt Lake. Microbial Ecol. 3: 143–165.

    Google Scholar 

  • Pugh, E. L., Wassef, M. K. & Kates, M. 1971. Inhibition of fatty acid synthetase in Halobacterium cutirubrum and Escherichia coli by high salt concentrations. Can. J. Biochem. 49: 953–958.

    Google Scholar 

  • Raymond, J. C. & Sistrom, W. R., 1969. Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Arch. Mikrobiol. 69: 121–126.

    Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G., 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact. Rev. 35: 171–205.

    Google Scholar 

  • Téodoresco, E. C., 1905. Organisation et développement du Dunaliella, nouveau genre de Volvocacée-Polyblepharidée. Beihefte zum Botanischen Zentralblatt, 18: 215–232.

    Google Scholar 

  • Téodoresco, E. C., 1906. OObservations morphologiques et biologiques sur le genre Dunaliella. Revue gén. bot. 18: 353–371.

    Google Scholar 

  • Tindall, D. R., Yopp, J. H., Miller, D. M. & Schmid, W. E., 1978. Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia, 17: 179–185.

    Google Scholar 

  • Tindall, D. R., Yopp, J. H., Schmid, W. E. & Miller, D. M., 1977. Protein and amino acid composition of the obligate halophile Aphanothece halophytica (Cyanophyta). J. Phycol. 13: 127–133.

    Google Scholar 

  • Trezzi, F., Galli, M. G. & Bellini, E., 1966. The resistance of D. salina to osmotic stresses: Ultrastructure researches. Giorn. Bot. Ital. 72: 255–263.

    Google Scholar 

  • Torsvik, T. & Dundas, I. D., 1974. Bacteriophage of Halobacterium salinarium. Nature, Lond. 248: 680–681.

    Google Scholar 

  • Van Auken, O. W. & McNulty, I. B., 1973. The effect of environmental factors on the growth of a halophilic species of algae. Biol. Bull. mar. biol. Lab., Woods Hole, 145: 210–222.

    Google Scholar 

  • Van Neil, C. B., 1931. On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3: 1–112.

    Google Scholar 

  • Volcani, B. E., 1944. The Microorganisms of the Dead Sea. In: Papers collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Collective Volume. Daniel Sieff Research Institute, Rehovoth, Israel.

  • Wais, A. C., Kon, M., MacDonald, R. E. & Stollar, B. D., 1975. Salt-dependent bacteriophage infecting Halobacterium cutirubrum and H. halobium. Nature, Lond. 256: 314–315.

    Google Scholar 

  • Yurina, E. V., 1966. Experiments in the cultivation of the halobiont algae Asteromonas gracilis and Dunaliella salina. Vestn. Mosk. Univ. 21: 76–83.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borowitzka, L.J. 4. The microflora. Hydrobiologia 81, 33–46 (1981). https://doi.org/10.1007/BF00048704

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048704