Skip to main content
Log in

A form of multivariate gamma distribution

  • Distributions
  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

Let V i, i=1,..., k, be independent gamma random variables with shape αi, scale β, and location parameter γi, and consider the partial sums Z 1=V 1, Z 2=V 1+V 2,..., Z k=V 1+...+V k. When the scale parameters are all equal, each partial sum is again distributed as gamma, and hence the joint distribution of the partial sums may be called a multivariate gamma. This distribution, whose marginals are positively correlated has several interesting properties and has potential applications in stochastic processes and reliability. In this paper we study this distribution as a multivariate extension of the three-parameter gamma and give several properties that relate to ratios and conditional distributions of partial sums. The general density, as well as special cases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, P. J. and Roux, J. J. J. (1981). A bivariate extension of the gamma distribution, South African Statist. J., 15, 1–12.

    Google Scholar 

  • Çinlar, E. (1975). Introduction to Stochastic Processes, Prentice Hall, New Jersey.

    Google Scholar 

  • Dussauchoy, A. and Berland, R. (1974). A multivariate gamma type distribution whose marginal laws are gamma, and which has a property similar to a characteristic property of the normal case, Statistical Distributions in Scientific Works, Vol. 1 (eds. G. P.Patil, S.Kotz and J. K.Ord), 319–328, Reidel, Dordrecht.

    Google Scholar 

  • Eagleson, G. K. (1964). Polynomial expansions of bivariate distributions, Ann. Math. Statist., 35, 1208–1215.

    Google Scholar 

  • Freund, J. E. (1961). A bivariate extension of the exponential distribution, J. Amer. Statist. Assoc., 56, 971–977.

    Google Scholar 

  • Gaver, D. P.Jr. (1970). Multivariate gamma distributions generated by mixture, Sankhyā Ser. A, 32, 123–126.

    Google Scholar 

  • Ghirtis, G. C. (1967). Some problems of statistical inference relating to double gamma distribution, Trabajos de Estadistica, 18, 67–87.

    Google Scholar 

  • Johnson, N. L. and Kotz, S. (1972). Distributions in Statistics, Vol. 4, Houghton Mifflin, Boston.

    Google Scholar 

  • Kibble, W. F. (1941). A two-variate gamma distribution, Sankhyā, 5, 137–150.

    Google Scholar 

  • Kowalczyk, T. and Tyrcha, J. (1989). Multivariate gamma distributions-properties and shape estimation, Statistics, 20, 465–474.

    Google Scholar 

  • Krishnaiah, P. R. and Rao, M. M. (1961). Remarks on a multivariate gamma distribution, Amer. Math. Monthly, 68, 342–346.

    Google Scholar 

  • Krishnaiah, P. R., Hagis, P. and Steinberg, L. (1963). A note on the bivariate chi-distribution, SIAM Rev., 5, 140–144.

    Google Scholar 

  • Lingappaiah, G. S. (1984). Bivariate gamma distribution as a life test model, Applikace Matematiky, 29, 182–188.

    Google Scholar 

  • Mathai, A. M. and Moschopoulos, P. G. (1991). On a multivariate gamma, J. Multivariate Anal., 39, 135–153.

    Google Scholar 

  • Miller, K. S., Bernstein, R. I. and Blumenson, L. E. (1958). Generalized Rayleigh processes, Quart. Appl Math., 16, 137–145 (Correction: ibid. (1963). 20, p. 395).

    Google Scholar 

  • Moran, P. A. P. (1967). Testing for correlation between non-negative variates, Biometrika, 54, 385–394.

    Google Scholar 

  • Moran, P. A. P. (1969). Statistical inference with bivariate gamma distributions, Biometrika, 56, 627–634.

    Google Scholar 

  • Moran, P. A. P. (1970). The methodology of rain making experiments, Review of the International Statistical Institute, 38, 105–115.

    Google Scholar 

  • Sarmanov, I. O. (1970). Gamma correlation process and its properties, Dokl. Akad. Nauk SSSR, 191, 30–32 (in Russian).

    Google Scholar 

  • Steel, S. J. and leRoux, N. J. (1987). A reparameterisation of a bivariate gamma extension, Comm. Statist. Theory Methods, 16, 293–305.

    Google Scholar 

  • Wilks, S. S. (1962). Mathematical Statistics, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Mathal, A.M., Moschopoulos, P.G. A form of multivariate gamma distribution. Ann Inst Stat Math 44, 97–106 (1992). https://doi.org/10.1007/BF00048672

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048672

Key words and phrases

Navigation