Skip to main content
Log in

Non-linear equations for the rotation of a viscoelastic planet taking into account the influence of a liquid core

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Non-linear equations governing the temporal evolution of the vector of instantaneous rotation are developed for an Earth with a homogeneous mantle having a viscoelastic Maxwell rheology and with a homogeneous inviscid fluid core.

This general theory is investigated using the angular momentum theorem applied to the coupled core-mantle system. It allows to study the influence upon the planetary rotation of a quasi-rigid rotational motion in the liquid core. It also enables to investigate the consequences of excitation sources (e.g. pressure), located at the core-mantle interface. Especially, the influence of viscoelastic variations in the inertia tensors resulting from the rotation itself or from various excitation sources are detailed with the help of a Love number formalism. The equations of the linear theory for an elastic Earth with a liquid core, and the non-linear theory for a viscous planet with a quasi-fluid behavior are shown to be particular cases of our generalized system of equations. Some planetological applications may be derived from the quasi-fluid approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alterman, Z., H. Jarosch and C.H. Pekeris: 1959, ‘Oscillation of the Earth’, Proc. R. Soc. London A 252, 80–95.

    Google Scholar 

  • Capitaine, N. and N. Xiao: 1982, ‘Some terms of nutation derived from the BIH data’, Geophys. J. R. astr. Soc. 68, 805–814.

    Google Scholar 

  • Daillet, S.: 1981, ‘Contribution à l'interprétation du mouvement du pôle par des phénomènes géophysiques, météorologiques et océanographiques’, Thesis, University Paul Sabatier, Toulouse, France.

    Google Scholar 

  • Darwin, G.H.: 1877, ‘On the influence of Geological Changes on the Earth's Axis of Rotation’, Phil. Trans. R. Soc. London 167, part I, 271–312.

    Google Scholar 

  • Euler, L.: 1749, Recherche sur la précession de équinoxes et sur la nutation de l'axe de la Terre, Berlin, H & M, 1749, 289.

  • Gwinn, C.R., T.A. Herring and I.I. Shapiro: 1986, ‘Geodesy by radiointerferometry: studies of forced nutations of the Earth 2, Interpretation’, J. Geophys. Res. 91, 4755–4765.

    Google Scholar 

  • Hinderer, J., H. Legros and M. Amalvict: 1982, ‘A search of Chandler and nearly diurnal free wobbles using Liouville equations’, Geophys. J. R. astr. Soc. 71, 303–322.

    Google Scholar 

  • Hinderer, J., D. Jault, H. Legros and J.L.Le Mouel: 1990, ‘Core-mantle topogrpahic torque: a spherical harmonic approach and implications for excitation of the Earth's rotation by core motions’, Phys. Earth Planet. Int. 59, 329–341.

    Google Scholar 

  • Hough, B.A.: 1895, ‘The Oscillations of a Rotating Ellipsoidal Shell containing Fluid’, Phil. Trans. R. Soc. London 186, 469–505.

    Google Scholar 

  • Lambeck, K.: 1980, The Earth's Variable Rotation, Cambridge University Press, 449 pp.

  • Landau, L. and E. Lifchitz: 1966, Mécanique, Edition de Moscou, 227 pp.

  • Legros, H.: 1987, ‘Sur quelques problèmes de dynamique planétaire’, Thesis, Université Louis Pasteur, Strasbourg, France.

    Google Scholar 

  • Liouville, M.J.: 1859, Développements sur un chapitre de la Mécanique de Poisson, Additions à la connaissance des temps.

  • Merriam, J.B.: 1985, ‘Toroidal Love Numbers and transverse stress at the Earth's surface’, J. Geophys. Res. 90, B9, 7795–7802.

    Google Scholar 

  • Milankovitch, M.: 1934, ‘Der Mechanismus des Polverlagerungen and die daraus sich ergebenden Polbahnkurven’, Gerlands Beitr. Geophys. 42, 70–97.

    Google Scholar 

  • Molodensky, M.S.: 1961, ‘The theory of nutation and diurnal Earth tides’, Commun. Observ. Roy. Belg. 188, 25–56.

    Google Scholar 

  • Munk, W.H. and G.J.F. Mac Donald: 1960, The rotation of the Earth, Cambridge University Press, London, 323 pp.

    Google Scholar 

  • Neuberg, J., Hinderer J. and W. Zurn: 1987, ‘Stacking gravity tide observations in Central Europe for the retrieval of the complex eigenfrequency of the nearly diurnal free wobble’, Geophys. J. R. asir. Soc. 91, 853–868.

    Google Scholar 

  • Newcomb, S.: 1892, ‘On the Dynamics of the Earth's Rotation with Respect to Periodic Variations of Latitude’, Monthly Not. R. Astr. Soc. 52, 336–341.

    Google Scholar 

  • Peltier, WR.: 1974, ‘Impulse response of a Maxwell Earth’, Rev. Geophysics and Space physics 12, No 4, November 1974.

  • Poincare, H.: 1902, Figure d'équilibre d'une masse fluide, Paris, C. Naud Editeur.

    Google Scholar 

  • Poincare, H.: 1910, ‘Sur la precession des corps déformables’, Bull. astr. 27, 321–356.

    Google Scholar 

  • Rochester, M.G., O.G. Jensen and D.E. Smylie: 1974, ‘A search for the Earth's nearly diurnal free wobble’, Geophys. J. R. astr. Soc. 38, 349–363.

    Google Scholar 

  • Runcorn, S.K.: 1984, ‘The primeval axis of rotation of the Moon’, Phil. Trans. R. Soc. London A 313, 77–83.

    Google Scholar 

  • Runcorn, S.K., G.A. Wilkins, E. Groten, H. Lenhardt, J. Campbell, R. Hide, B.F. Chao, A. Souriau, J. Hinderer, H. Legros, J.L.Le Mouel and M. Feissel: 1988, ‘The excitation of the Chandler wobble’, Surveys in Geophysics 9, 419–449.

    Google Scholar 

  • Sabadini, R. and W.R. Peltier: 1981, ‘Pleistocene deglaciation and the Earth's rotation implications for mantle viscosity’, Geophys. J. R. astr. Soc. 66, 553–578.

    Google Scholar 

  • Sabadini, R., D. Yuen and E. Boschi: 1982, ‘Polar wandering and the forced responses of a rotating, multilayered, viscoelastic Earth’, J. Geophys. Res. 87, B4, 2885–2903.

    Google Scholar 

  • Sabadini, R., D. Yuen and E. Boschi: 1984, ‘A comparison of the complete and truncated versions of the polar wander equations’, J. Geophys. Res. 89, B9, 7609–7620.

    Google Scholar 

  • Sabadini, R., B. Smith and D. Yuen: 1987, ‘Consequences of experimental transient rheology’, Geophys. Res. Lett. 14, 8, 816–819.

    Google Scholar 

  • Sabadini, R. and D. Yuen: 1989, ‘Mantle stratification and long-term polar wander’, Nature 339, June 1989.

  • Sasao, T., J. Okamoto and S. Sakai: 1977, ‘Dissipative core-mantle coupling and nutational motion of the Earth’, Publ. Astron. Soc. Japan 29, 83–105.

    Google Scholar 

  • Sasao, T., S. Okubo and S. Masanori: 1980, ‘A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth’, Proc. IAU symposium No 78, 1980.

  • Schultz, P.: 1986, ‘Le déplacement des poles sur Mars’, Pour la Science, Fevrier 1986.

  • Toomre, A.: 1974, ‘On the ‘nearly diurnal wobble’ of the Earth’, Geophys. J. R. astr. Soc. 38, 335–348.

    Google Scholar 

  • Vondrak, J.: 1985, ‘Long-period behaviour of polar motion between 1900.0 and 1984.0’, Annales Geophysicae 3, 3, 351–356.

    Google Scholar 

  • Wahr, J.M.: 1982, ‘The effects of the atmosphere and oceans on the Earth's wobble. I. Theory’, Geophys. J. R. astr. Soc. 70, 349–372.

    Google Scholar 

  • Wahr, J.M.: 1983, ‘The effects of the atmosphere and oceans on the Earth's wobble and on seasonal variations in length of day, II Results’, Geophys. J. R. asir. Soc. 74, 451–487.

    Google Scholar 

  • Wu, P. and W. Peltier: 1982, ‘Viscous gravitational relaxation’, Geophys. J. R. astr. Soc. 70, 435–485.

    Google Scholar 

  • Yuen, D., R. Sabadini and E. Boschi: 1982, ‘Viscosity of the lower mantle as inferred from rotational data’, J. Geophys. Res. 87, B13, 10, 745–10, 762.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lefftz, M., Legros, H. & Hinderer, J. Non-linear equations for the rotation of a viscoelastic planet taking into account the influence of a liquid core. Celestial Mech Dyn Astr 52, 13–43 (1991). https://doi.org/10.1007/BF00048585

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048585

Key words

Navigation